
LOCKME: SECURE FILE ENCRYPTION AND DECRYPTION DESKTOP

APPLICATION

By

MUHAMAD AZRI MUHAMAD AZMIR

012024021197

Project Submitted in Partial Fulfilment of the Requirements for the Degree of

Bachelor in Computer Forensic (Hons.) in the Faculty of Information Sciences

and Engineering

June 2025

PENGISYTIHARAN

(Declaration)

Saya,

I,

MUHAMAD AZRI MUHAMAD AZMIR

calon bagi ijazah

candidate for the degree of

BACHELOR IN COMPUTER FORENSIC (HONS.),

Management & Science University mengakui bahawa :

Management & Science University certifies that:

i) Tesis saya telah dijalankan, digubal, dan ditulis sendiri di bawah penyeliaan:

My thesis was personally developed, conducted and written by us under the

supervision of:

 DR. ASMA MAHFOUDH HEZAM AL-HAKIMI

ii) Data saya adalah data asal dan saya/kami sendiri mengumpul dan

menganalisisnya; dan

 My data are original and personally collected and analysed; and

iii) Saya akan sentiasa mematuhi syarat, polisi, dan peraturan MSU mengenai

penulisan tesis, termasuk undang-undang hak cipta dan paten Malaysia.

 I shall at all times be governed by the conditions, policies, and regulations of

the MSU on thesis writing, including the copyright and patent laws of Malaysia.

Jika saya didapati melanggar perkara-perkara di atas, saya dengan relanya menepikan

hak penganugerahan diploma saya dan tertakluk kepada syarat dan peraturan disiplin

Management & Science University.

In the event that my thesis is found to violate the conditions mentioned above, I

voluntarily waive the right of conferment of my diploma and will be subjected to the

disciplinary rules and regulations of Management & Science University.

_________________ ____________________ _________

 Nama Calon Tandatangan Calon Tarikh

 Candidate’s Name Candidate’s Signature Date

iii

Faculty of Information Sciences and Engineering

Management & Science University

PERAKUAN KERJA KERTAS PROJEK

(Certification of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa

(I, the undersigned, certify that)

MUHAMAD AZRI MUHAMAD AZMIR

calon untuk ijazah

(candidate for the degree of)

BACHELOR IN COMPUTER FORENSIC (HONS.),

telah mengemukakan kertas projek yang bertajuk

(has presented his/her project paper of the following title)

LOCKME: SECURE FILE ENCRYPTION AND DECRYPTION DESKTOP

APPLICATION

seperti yang tercatat di muka surat tajuk dan kulit kertas projek

(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan, dan

meliputi bidang ilmu dengan memuaskan.

(that the project paper is acceptable in form and content and that a satisfactory

knowledge of the field is covered by the project paper).

Nama Penyelia

(Name of Supervisor) : DR. ASMA MAHFOUDH HEZAM AL-HAKIMI

Tandatangan

(Candidate’s Signature) : ___

Tarikh

(Date) : ____________________

iv

ACKNOWLEDGMENTS

I would like to thank everyone who helped me along the way. First, my deepest

gratitude goes to my supervisor, Dr. Asma Mahfoudh Hezam al-Hakimi. Their

guidance and steady feedback shaped this project from the very beginning.

I am also thankful to my family and friends, for their constant support and

encouragement. Their belief in me gave me the strength to push through both the easy

and difficult moments.

Finally, many others lent a hand, whether with advice, motivation, or a

listening ear. Each contribution, big or small, played a part in bringing this study to

completion. I appreciate every one of you.

Terima kasih!

v

ABSTRACT

Abstract of project presented to the Senate of Management & Science University in

partial fulfilment of the requirements for the degree of Bachelor in Computer Forensic

(Hons.).

LOCKME: SECURE FILE ENCRYPTION AND DECRYPTION DESKTOP

APPLICATION

By

MUHAMAD AZRI MUHAMAD AZMIR

June 2025

Faculty: Information Sciences and Engineering

LockMe is a browser-based application that works on both Windows and Linux, giving

users a straightforward way to encrypt and decrypt files on their own machines. Built

with Next.js, React, and TypeScript, it relies on the Web Crypto API to run AES-256-

GCM encryption entirely in the browser, so neither the files nor the passphrases ever

leave the device. Firebase provides secure account management and an encrypted

code-snippet repository, while Genkit and Google Gemini supply AI-driven tools for

passphrase generation, strength analysis, and recovery-prompt enhancement.

Developed under the ADDIE model, LockMe was evaluated through functional,

performance, usability, and security tests across major browsers and devices; the

System Usability Scale returned a “Good” rating, and security checks confirmed

effective protection against unauthorised access and tampering. The findings show that

current web frameworks can match the security level of native desktop software while

keeping the interface smooth and easy to use, letting users protect their data without

technical expertise. Future work will explore extra ciphers, a built-in secure-sharing

feature, two-factor authentication, and expanded AI assistance to further boost the

system’s capability and resilience.

vi

ABSTRAK

Abstrak tesis yang dikemukakan kepada Senat Management & Science University

sebagai memenuhi sebahagian keperluan untuk ijazah Sarjana Muda Forensik

Komputer (Kepujian).

LOCKME: APLIKASI DESKTOP UNTUK PENYULITAN DAN

PENYAHSULITAN FAIL YANG SELAMAT

Oleh

MUHAMAD AZRI MUHAMAD AZMIR

Jun 2025

Fakulti: Sains Maklumat dan Kejuruteraan

LockMe ialah aplikasi berasaskan pelayar yang berfungsi pada Windows dan Linux,

membolehkan pengguna menyulit dan menyahsulit fail secara terus pada komputer

mereka. Dibangunkan dengan Next.js, React dan TypeScript, ia menggunakan Web

Crypto API untuk melaksanakan penyulitan AES-256-GCM sepenuhnya di dalam

pelayar, memastikan fail dan frasa laluan tidak pernah tinggalkan dalam peranti.

Firebase menyediakan pengurusan akaun yang selamat serta repositori coretan kod

yang disulitkan, manakala Genkit dan Google Gemini membekalkan alat AI bagi

penjanaan frasa laluan, analisis kekuatan dan penambahbaikan arahan pemulihan.

Mengikut model ADDIE, LockMe dinilai melalui ujian kefungsian, prestasi,

kebolehgunaan dan keselamatan merentas pelayar serta peranti utama; Skala

Kebolehgunaan Sistem (SUS) memberi penarafan “Baik”, dan semakan keselamatan

mengesahkan perlindungan berkesan terhadap capaian tanpa kebenaran dan

pengubahsuaian. Dapatan kajian menunjukkan rangka kerja web semasa mampu

menyamai tahap keselamatan perisian desktop asli sambil mengekalkan antara muka

yang lancar dan mudah digunakan, membolehkan pengguna melindungi data tanpa

kepakaran teknikal. Kajian masa depan akan meneroka sifir tambahan, ciri

perkongsian selamat terbina dalam, pengesahan dua faktor dan bantuan AI yang

diperluas untuk meningkatkan lagi keupayaan serta ketahanan sistem.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iv

ABSTRACT ... v

ABSTRAK .. vi

LIST OF FIGURES .. x

LIST OF TABLES.. xii

LIST OF ABBREVIATIONS ………………………………………………...…….xiii

CHAPTER 1: INTRODUCTION .. 14

1.1 Background of Study ... 14

1.2 Problem Statement ... 15

1.3 Project Objectives .. 16

1.4 Project Scope .. 17

1.5 Project Significance ... 19

1.6 Project Limitations ... 20

1.7 Chapter Summary... 21

CHAPTER 2: LITERATURE REVIEW .. 23

2.1 Introduction .. 23

2.2 Explanation of Key Terms, Terminologies, and Theories 25

2.3 Review of Existing Solutions and Technologies .. 30

2.3.1 Review of Current Systems .. 30

2.3.2 Comparison of Technologies .. 33

2.3.3 Gaps in Existing Solutions ... 35

2.4 Relevant Algorithms and Methodologies ... 39

2.4.1 Survey of Relevant Algorithms .. 39

2.4.2 Implementation Approaches... 43

2.4.3 Evaluation Metrics ... 50

2.5 State of the Art in the Field .. 55

2.5.1 Recent Advances .. 55

2.5.2 Trends and Future Directions ... 60

2.6 Critical Review of Similar Products or Systems .. 63

2.6.1 Review of Similar Projects .. 63

2.6.2 How This Project Differs ... 68

2.6.3 Comparison Between Similar Systems and Proposed System 70

2.7 Summary of Findings ... 71

2.7.1 Synthesis of Literature ... 71

2.7.2 Research Gap ... 72

2.8 Chapter Summary... 74

viii

2.8.1 Justification for the Project .. 74

2.8.2 Connection to Project Goals... 79

CHAPTER 3: RESEARCH METHODOLOGY ... 83

3.1 Introduction .. 83

3.2 Software Development Methodology .. 84

3.2.1 Chosen Methodology and Justification .. 84

3.2.2 Step-by-step Explanation of Activities Done in Each Phase of the

Chosen Methodology ... 86

3.3 Research Methodology... 89

3.3.1 Chosen Research Methodology and Justification 89

3.3.2 Questionnaire Design and Samples .. 90

3.3.3 Analysis of Questionnaire Data ... 95

3.4 Proposed System Design .. 106

3.4.1 UML Modelling of the Proposed System .. 107

3.4.2 Hardware Design and Block Diagram ... 114

3.5 Chapter Summary... 116

CHAPTER 4: RESULTS AND DISCUSSION ... 119

4.1 Introduction .. 119

4.2 Implementation .. 119

4.2.1 Development Environment .. 119

4.2.2 System Modules and Implementation .. 120

4.2.3 Database Design and Implementation .. 125

4.2.4 Third-party APIs and Libraries .. 126

4.2.5 Testing During Implementation ... 128

4.2.6 Deployment Process ... 129

4.2.7 Security Measures .. 129

4.2.8 Screenshots and Sample Output ... 130

4.3 System Evaluation .. 133

4.3.1 Introduction .. 133

4.3.2 Evaluation Objectives .. 134

4.3.3 Evaluation Methods ... 134

4.3.4 Evaluation Results .. 135

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 139

5.1 Overview .. 139

5.2 How the Project Objectives Are Met ... 139

5.3 Significance .. 140

5.4 Future Enhancement/Recommendations .. 140

ix

REFERENCES ... 143

APPENDICES ... 152

x

LIST OF FIGURES

Figure 2.2.1 Logo of Hat.sh ... 64

Figure 2.2.2 Interface of Hat.sh ... 65

Figure 2.2.3 Logo of Enc ... 66

Figure 2.2.4 Interface of Enc.. 67

Figure 3.3.1 Phases of the ADDIE model .. 86

Figure 3.3.2 Survey form display ... 90

Figure 3.3.3 Survey: Question 1 .. 90

Figure 3.3.4 Survey: Question 2 .. 91

Figure 3.3.5 Survey: Question 3 .. 91

Figure 3.3.6 Survey: Question 4 .. 91

Figure 3.3.7 Survey: Question 5 .. 92

Figure 3.3.8 Survey: Question 6 .. 92

Figure 3.3.9 Survey: Question 7 .. 92

Figure 3.3.10 Survey: Question 8 .. 93

Figure 3.3.11 Survey: Question 9... 93

Figure 3.3.12 Survey: Question 10 .. 93

Figure 3.3.13 Survey: Question 11 ... 94

Figure 3.3.14 Survey: Question 12 .. 94

Figure 3.3.15 Survey: Question 13 .. 94

Figure 3.3.16 Survey: Question 14 .. 95

Figure 3.3.17 Survey: Question 15 .. 95

Figure 3.3.18 Analysis of respondent’s age distribution .. 95

Figure 3.3.19 Analysis of respondent’s gender distribution 96

Figure 3.3.20 Analysis of respondent’s occupation ... 96

Figure 3.3.21 Analysis of respondents’ technical expertise 97

Figure 3.3.22 Analysis of respondents’ usage of operating systems (OS) 98

Figure 3.3.23 Analysis of respondents’ usage of any file encryption tools or methods

 .. 98

Figure 3.3.24 Analysis of respondents' encryption tool preferences 99

Figure 3.3.25 Analysis of respondents' reasons for using or not using encryption tools

 .. 100

Figure 3.3.26 Analysis of respondents’ challenges when using encryption tools 100

Figure 3.3.27 Analysis of respondents perceived need for a user-friendly tool 101

xi

Figure 3.3.28 Analysis of respondents desired features in an encryption tool 102

Figure 3.3.29 Analysis of respondents' importance of security, ease of use, and cross-

platform compatibility .. 103

Figure 3.3.30 Analysis of respondents' willingness to try a new encryption tool 103

Figure 3.3.31 Analysis of respondents' concerns and requirements regarding file

encryption ... 104

Figure 3.3.32 Analysis of respondents' suggested features and improvements for

LockMe .. 105

Figure 3.3.33 Use Case Diagram ... 107

Figure 3.3.34 Package Diagram ... 108

Figure 3.3.35 Class Diagram .. 109

Figure 3.3.36 Sequence Diagram ... 110

Figure 3.3.37 State Machine Diagram ... 111

Figure 3.3.38 Activity Diagram ... 113

Figure 3.3.39 Block Diagram ... 116

Figure 4.1 Next.js Logo ... 120

Figure 4.2 Firebase Logo ... 122

Figure 4.3 React Logo .. 126

Figure 4.4 TailwindCSS Logo .. 126

Figure 4.5 Gemini Logo ... 127

Figure 4.6 Vercel Logo ... 129

Figure 4.7 LockMe Interface After Successful Encryption 130

Figure 4.8 LockMe Interface During Decryption Process 131

Figure 4.9 LockMe Interface After Successful Decryption 131

Figure 4.10 LockMe Interface Displaying Error Handling (e.g., Incorrect Passphrase)

 .. 132

Figure 4.11 AI Security Toolkit - Passphrase Generator in Action 132

Figure 4.12 Code Snippet Manager Interface .. 133

xii

LIST OF TABLES

Table 2.1 Comparison table between systems .. 70

Table 3.1 Requirements of the proposed system .. 106

Table 3.2 Hardware requirements for the proposed system 115

Table 4.1 Client-Side Encryption and Decryption Performance for Varying File Sizes

 .. 136

xiii

LIST OF ABBREVIATIONS

Abbreviation Definition

AES Advanced Encryption Standard

AI Artificial Intelligence

API Application Programming Interface

APT Advanced Persistent Threat

CBC Cipher Block Chaining

CSPRNG Cryptographically Secure Pseudo-Random Number Generator

ECB Electronic Codebook

GCM Galois/Counter Mode

GUI Graphical User Interface

IT Information Technology

IV Initialisation Vector

OTP / TOTP One-Time Password / Time-based One-Time Password

PC Personal Computer

PKI Public Key Infrastructure

PWA Progressive Web App

RSA Rivest–Shamir–Adleman (public-key algorithm)

SUS System Usability Scale

TLS Transport Layer Security

USB Universal Serial Bus

14

CHAPTER 1

INTRODUCTION

1.1 Background of Study

As daily life moves further online, the amount of personal and business

data we create, and store has grown sharply. Cyber-attacks have followed the same

upward trend, moving beyond large corporations to target ordinary users, small

firms, and public bodies alike (Verizon, 2025). The consequences can be severe:

financial losses, damaged reputations, lost customer confidence, and potential

legal troubles (Morgan, 2020). Recent studies show that data breach costs continue

climbing, affecting millions of people each year (IBM, 2024).

Encryption offers one of the best defences against these threats. At its core,

encryption converts readable information into scrambled code that only authorized

users can decode with the right key. This means that even if hackers steal encrypted

files, they can't actually use the information without breaking the encryption,

which is extremely difficult with proper implementation (Schneier & Diffie, 2015).

However, most encryption tools present a significant problem: they're built for tech

experts. These programs often feature complicated interfaces and assume users

understand complex cryptographic concepts. This creates a real barrier for

everyday users who need protection but lack technical expertise (Kirlappos &

Sasse, 2014). Additionally, many encryption solutions only work on specific

operating systems, limiting their usefulness for people who use different devices.

Recognizing this gap, LockMe, which is a desktop application specifically

designed for non-technical users who need reliable file protection, is developed.

LockMe works on both Windows and Linux systems, which cover the majority of

personal and business computers. The application uses Advanced Encryption

15

Standard (AES), a proven encryption method, but presents it through an intuitive

interface that doesn't require cryptographic knowledge. The goal is to make strong

data security accessible to everyone.

1.2 Problem Statement

i. Lack of Cross-Platform Compatibility in Encryption Tools

Nowadays, the majority of people use a variety of gadgets and

operating systems. Depending on their needs, a person may alternate between

Linux and Windows for work or development projects. Unfortunately, a lot of

encryption tools are only compatible with a single operating system, which

forces users to either learn new tools for each platform or stick with less secure

options. For individuals, small businesses, and IT professionals who require

uniform security across their various systems, this is a huge pain in the neck.

ii. Insufficient Accessibility to Robust Encryption Techniques

Strong security is provided by advanced encryption techniques like

AES (Advanced Encryption Standard), which are typically found in software

intended for highly technical users. Because of this, it is very difficult for non-

technical users to access and use these strong encryption methods. This

vulnerability exposes private information to unauthorized access, which is a

major security risk for both people and businesses.

iii. Usability Challenges in Existing Encryption Tools

Most encryption programs feel old. People find it hard to use the confusing

menus. The instructions are not clear. A user must complete many steps to encrypt

one file. Common features that people expect in modern software are often gone;

16

they do not see drag-and-drop file support. A program does not show progress bars;

it also lacks clear confirmations when tasks finish. These usability problems stop

people from using better security practices. So, their private information stays

exposed.

1.3 Project Objectives

i. To develop a cross-platform desktop application supporting both

Windows and Linux operating systems.

People now move between various computers and operating systems

frequently. A person could own a Windows laptop for work. A Linux server

may run development tasks. Some individuals help family members whose

computers use different systems. When security tools function on only one

platform, problems develop in protection. This project handles Windows in

addition to Linux because both platforms include most personal and work

computing settings - this applies whether someone protects personal files,

operates a small business, or oversees computer systems.

ii. To implement advanced encryption techniques, specifically AES

encryption, ensuring robust file security.

The application uses AES encryption. This is the industry standard for

file security. Governments along with security professionals use AES. It

provides good protection, and it does not make the computer lag. The

application includes this encryption. Users get high security; and they do not

need to understand technical details or to navigate complex settings.

17

iii. To design an intuitive and user-friendly interface with features such as

drag-and-drop file selection and clear status messages.

Making technology accessible is more of a barrier to improved security

than the technology itself. Anyone familiar with modern software will

recognise this app. You will be able to drag files straight into the window, see

transparent progress bars, and get clear notifications while the encryption

process is underway. No hidden menus, no perplexing technical jargon, and no

uncertainty about whether something worked or not. Strong encryption should

be as simple as copying a file.

1.4 Project Scope

User Scope

a) Users can encrypt and decrypt files securely using a straightforward graphical

interface.

b) Users can perform encryption and decryption tasks on both Windows and

Linux systems.

c) Users can select files of various formats, including documents, images, and

compressed archives, for encryption or decryption.

d) Users can access all features directly from the application's main screen after

startup.

e) The application provides clear navigation between encryption, decryption, and

key management functions.

f) Users can generate, save, and retrieve encryption keys through the application.

g) Users with different levels of technical knowledge, from beginners to

experienced users, can operate the application easily.

18

h) Users can encrypt files in real-time and verify file integrity using the built-in

integrity check feature.

i) Users don't need to rely on cloud services for encryption, as all processes

happen locally on their devices.

System Scope

a) The system uses AES in addition to RSA encryption - it secures files.

b) The system makes, keeps along with finds encryption keys for users.

c) The application encrypts and decrypts many file types. It works with text,

pictures as well as compressed files.

d) The system lets users drag and drop files. This makes it easier to pick files for

encryption or decryption.

e) The system runs on a desktop computer - it does not need cloud services or

company networks.

f) The application works on different computers. It runs well on Windows besides

Linux.

g) The system encrypts files as they are used - it also checks file integrity to keep

operations safe.

h) The system has a simple user interface. Both technical plus non-technical

people can use it.

i) The application encrypts and decrypts local files. It does not have complex

company encryption systems or batch processing.

j) The system completes all operations, like key management and encryption,

according to common security rules.

19

1.5 Project Significance

i. Enhancing Data Security

With cyber-attacks becoming more frequent and sophisticated, people

need practical ways to protect their personal and professional files. This project

gives users a straightforward encryption tool that works, helping them secure

sensitive information without requiring advanced technical knowledge or

expensive software.

ii. User Accessibility

Most encryption programs appear as if made for security specialists -

this application alters that. It makes file protection easy, like moving and

placing a file. When security tools are easy to use, more people use them, which

means more protection for everyone.

iii. Cross-Platform Compatibility

Many people work across different operating systems. Windows at the

office, Linux for development, or helping family members with various setups.

Having one encryption tool that works consistently across platforms eliminates

the hassle of learning different programs or dealing with compatibility issues.

iv. Promoting Cybersecurity Awareness

By making encryption accessible, this project encourages users to adopt

secure file management practices, contributing to a more secure digital

ecosystem.

20

v. Cost-Effective Solution

Good encryption should not cost much or demand regular payments;

this project provides strong security without the money problem that often

stops individuals and small businesses from putting in place proper data

protection methods.

1.6 Project Limitations

i. Lack of Cloud Integration

LockMe operates entirely as a standalone desktop application, which

means it doesn't connect to popular cloud storage services like Google Drive,

Dropbox, or OneDrive. While this design keeps files completely under user

control and prevents any data from leaving the local computer, it also means

users are responsible for managing their encrypted files manually. Users

working across multiple devices or needing to share files with colleagues must

handle the transfer and synchronization through external methods. This can

create extra steps in workflows that rely heavily on cloud-based collaboration.

ii. No Passphrase Recovery for Encrypted Files

LockMe prioritizes user privacy by never storing or transmitting

passphrases anywhere, not on servers, not in the application, nowhere. This

ensures complete security for encrypted content, but it comes with an important

trade-off: if users forget their passphrase, there's no way to recover it. The

encrypted file will be permanently inaccessible. The application cannot and

will not help retrieve lost passphrases because it never had access to them in

the first place. Users need to keep track of their passphrases using secure

methods, whether that's a password manager, written notes, or whatever system

21

works best for their situation.

iii. Manual Sharing of Encrypted Files and Passphrases

While LockMe excels at encrypting and decrypting files, it doesn't

include any built-in sharing features. When users need to send an encrypted file

to someone else, they must handle both the file transfer and passphrase

communication separately. Users might email the .lockme file and then text

the passphrase, or use a cloud service for the file and a secure messaging app

for the key. LockMe doesn't provide integrated secure messaging or managed

sharing portals like some enterprise solutions do. This manual approach gives

users flexibility in choosing their preferred communication methods, but it also

means coordinating secure file sharing requires more steps and careful

attention to avoid sending passphrases through insecure channels.

1.7 Chapter Summary

Today, protecting digital information is very important due to the constant

threat of cybercrime. Encryption is a key defence, as it transforms readable

information into a secure, unreadable format. But many of today’s encryption tools

have significant problems. For example, they often work only on certain operating

systems, making consistent security hard for users who switch between Windows

and Linux. Additionally, strong encryption methods like AES can be difficult for

non-technical users to access because of complicated interfaces and poor usability.

In order to solve these problems, this project introduces LockMe, a desktop

encryption application created specifically with everyday users in mind. LockMe

aims to achieve three main objectives: first, it should work flawlessly on both

Windows and Linux platforms; second, it should provide strong security through

22

AES encryption; and third, it should have an easy-to-use interface with features

like transparent status updates and drag-and-drop file handling. With this program,

users can quickly check the integrity of files, manage encryption keys, and encrypt

and decrypt a variety of file types. LockMe runs locally on the user's PC without

relying on cloud services. Additionally, LockMe will use the AES and RSA

algorithms, handle encryption keys securely, and ensure consistent user experience

across different operating systems.

LockMe sets out to fill these gaps with an encryption tool that pairs strong

security with everyday usability. Designed for both technical and non-technical

users, it allows individuals and small organisations to safeguard sensitive files

through well-established cryptographic methods presented in a clear, practical

interface. The next chapter reviews the foundations of encryption, surveys existing

tools, and pinpoints the shortcomings that LockMe is built to solve. It covers core

cryptographic concepts, weighs the advantages and drawbacks of current solutions,

and shows why achieving the right balance of security, ease of use, and

accessibility is vital in today’s threat landscape. This context clarifies how LockMe

contributes to better data-protection practices.

23

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The "LockMe: Secure File Encryption and Decryption Desktop

Application" project makes a significant contribution to the ever-evolving fields of

cybersecurity, with a pronounced emphasis on data security and practical

cryptography. These domains are of increasing critical importance as modern

society becomes more reliant on digital platforms for nearly every facet of life,

including communication, data storage, financial transactions, and critical

infrastructure management (Kshetri, 2013). The sheer volume of sensitive

information, be it personal, financial, corporate, or governmental, necessitates the

implementation of robust and accessible data protection measures (Awad Al-

Hazaimeh, 2013). The global creation of data is projected to grow exponentially in

the coming years, further amplifying the attack surface for malicious actors

(Reinsel et al., 2018).

The rapid digitisation of almost every industry has led to a dramatic

increase in the amount of sensitive data created, transmitted, and stored daily.

While this digital transformation offers numerous advantages, such as enhanced

accessibility, efficiency, and global reach, it concurrently introduces a multitude

of risks (IBM, 2024). The number, variety, and sophistication of cybersecurity

threats including but not limited to ransomware, sophisticated phishing campaigns,

advanced persistent threats (APTs), data breaches, and unauthorized access are

constantly on the rise (Lella et al., 2024). These dangers can have catastrophic

repercussions, ranging from substantial monetary losses and reputational damage

to severe legal ramifications and even threats to national security, affecting

24

individuals, businesses, and governments alike (Ahamad & Abdullah, 2016). The

economic impact of cybercrime is now measured in trillions of dollars annually,

underscoring the urgency of effective security measures (Morgan, 2020).

Cryptography, the science and art of protecting information and

communication through the use of codes, is essential in addressing these

multifaceted issues. Cryptographic techniques, primarily encryption, ensure the

confidentiality, integrity, and authenticity of sensitive data by transforming it into

a format that is unreadable and unusable by unauthorised individuals (Katz &

Lindell, 2021). Encryption serves as an indispensable technique for preventing

data theft, misuse, and interception, whether data is in transit over networks or at

rest in storage systems.

Despite the abundance of encryption tools and systems available, numerous

obstacles must still be overcome to make encryption truly usable, efficient, and

universally accessible to a diverse range of users (Das et al., 2020). Many existing

solutions feature intricate procedures, command-line interfaces, or complex

configuration options that can deter non-technical individuals from utilising them

effectively, as these tools were often designed with experienced IT professionals

or cryptographers in mind (Nielsen, 1999). Moreover, the lack of seamless cross-

platform compatibility in many encryption tools significantly limits their

usefulness for users operating in heterogeneous computing environments, such as

businesses or individuals who regularly use both Linux and Windows systems

(Cranor & Garfinkel, 2005).

LockMe addresses these barriers by coupling AES encryption with a

straightforward, drag-and-drop interface that operates identically on both operating

systems. By simplifying workflows and eliminating technical hurdles, the project

25

aims to make strong file protection attainable for individuals and small

organisations alike. The following literature review therefore revisits core

cryptographic principles, surveys current tools and their limitations, and highlights

why an approach that balances security, usability, and accessibility has become

essential amidst today’s escalating cyber-risk landscape.

2.2 Explanation of Key Terms, Terminologies, and Theories

Several foundational theories, concepts, and terminologies are central to

the development and understanding of the project. Comprehending these terms is

crucial for grasping the underlying mechanisms, design choices, and

methodologies employed in the project:

i. Cryptography:

The study and application of techniques that permit secure communication

and data protection in the presence of adversaries (third parties) is known as

cryptography (Menezes et al., 1996). It is a fundamental and interdisciplinary field

of study, drawing from mathematics, computer science, and electrical engineering,

that uses mathematical algorithms and keys to convert readable data (plaintext)

into an unintelligible format (ciphertext) and vice-versa. The primary objectives of

cryptography include ensuring data confidentiality (preventing unauthorized

disclosure), integrity (ensuring data has not been altered), authentication (verifying

the identity of users or systems), and non-repudiation (preventing denial of an

action). Cryptography is a cornerstone of modern data security systems, essential

for applications such as digital signatures, encrypted communications, secure

financial transactions, and safe file storage (Awad Al-Hazaimeh, 2013).

26

ii. Encryption:

Encryption is the specific process of transforming plaintext into ciphertext

using an encryption algorithm (also known as a cipher) and an encryption key (Paar

& Pelzl, 2010). This procedure ensures that data becomes unreadable and

meaningless to unauthorized individuals who do not possess the corresponding

decryption key. Encryption is widely used to secure communications (e.g., email,

messaging), protect sensitive information stored on devices or in databases, and

comply with data privacy regulations (Stallings & Brown, 2012). It can be applied

to various data types, including text, images, audio, video, and entire files. Even if

files are intercepted, stolen, or compromised, encryption shields user data from

unwanted access when implemented correctly with applications like LockMe

(Ahamad & Abdullah, 2016).

iii. Decryption:

The converse of encryption, decryption is the process of transforming

ciphertext back into its original, readable plaintext state. This procedure requires

the correct decryption algorithm and the corresponding decryption key, ensuring

that only authorized users or systems can access the protected data (Bishop, 2018).

Decryption is essential for retaining the usability of encrypted data, as users must

be able to recover and manipulate the original information while maintaining its

security during storage and transmission (Awad Al-Hazaimeh, 2013).

iv. Symmetric-Key Algorithms:

Also known as secret-key cryptography, symmetric-key algorithms employ

the same single key for both encryption and decryption processes (Schneier &

Diffie, 2015). These algorithms are generally characterized by their high speed and

27

computational efficiency, making them ideal for encrypting large volumes of data,

such as entire files or streaming data. Prominent examples include the Advanced

Encryption Standard (AES), Blowfish, and the formerly widespread Data

Encryption Standard (DES) (Mushtaq et al., 2017). While symmetric-key

algorithms offer strong security, their primary challenge lies in secure key

distribution: both communicating parties must possess the same secret key, and

exchanging this key securely over an insecure channel can be problematic. Because

of its proven security and efficiency, AES has become the industry standard for

bulk data encryption and is the main cryptographic method employed in the

LockMe project.

v. Asymmetric-Key Algorithms:

Also referred to as public-key cryptography, asymmetric-key algorithms

utilize a pair of mathematically related keys: a public key and a private key (Rivest

et al., 1978). The public key is freely disseminated and used for encryption, while

the private key is kept secret by the owner and used for decryption. This dual-key

approach obviates the need for a secure channel to exchange keys, as the public

key can be shared openly without compromising the private key's security. Diffie-

Hellman (for key exchange) and Rivest-Shamir-Adleman (RSA) (for encryption

and digital signatures) are well-known examples of asymmetric algorithms

(Shantanu Joshi, 2013). These algorithms are frequently employed for tasks like

secure web communications (HTTPS/TLS), digital signatures (to verify data

integrity and authenticity), and secure key exchange to establish a shared secret for

symmetric encryption. While asymmetric algorithms offer enhanced security for

key management and data authentication, they are generally more computationally

intensive and slower than symmetric algorithms, making them less suitable for

28

encrypting large data volumes directly.

vi. Feistel Network (or Feistel Cipher):

A Feistel network is a specific cryptographic structure used in the design

of many block ciphers. It was named after Horst Feistel, who co-developed the

Lucifer cipher at IBM, a precursor to DES (Technology, 1977). This design divides

the data block into two (usually equal) halves. The encryption process involves

multiple rounds, where in each round, one half of the data is modified by a "round

function" (which takes the other half and a subkey as input), and then the halves

are swapped (usually). A key advantage of the Feistel structure is that the

encryption and decryption processes are very similar, often identical, requiring

only the reversal of the subkey schedule for decryption. This simplifies

implementation in both hardware and software and reduces the chance of design

errors. DES and Blowfish are notable examples of algorithms based on the Feistel

network (Singh Karamjeet Singh, 2013)

vii. Block Cipher:

This is a fundamental type of symmetric encryption algorithm that operate

on fixed-size blocks of plaintext data, transforming them into blocks of ciphertext

of the same size, under the control of a secret key (Daemen & Rijmen, 2002).

Common block sizes are 64 bits (e.g., DES, Blowfish) and 128 bits (e.g., AES). If

the plaintext is larger than the block size, it is divided into multiple blocks, and if

the last block is smaller than the block size, padding is typically applied. Block

ciphers can be used in various "modes of operation" (e.g., Electronic Codebook -

ECB, Cipher Block Chaining - CBC, Counter - CTR, Galois/Counter Mode -

GCM) to securely handle sequences of blocks (Dworkin, 2001). These modes

29

define how the repeated application of the cipher to individual blocks results in the

encryption of the entire message, often incorporating an Initialization Vector (IV)

to ensure that identical plaintext blocks encrypt to different ciphertext blocks. AES,

DES, and Blowfish are all examples of block ciphers (Mushtaq et al., 2017). Their

fixed-size design allows for efficient management of large datasets while

maintaining robust cryptographic properties

viii. Hashing:

A cryptographic hash function is an algorithm that takes an arbitrary

amount of data input a "message" and returns a fixed-size string of characters,

which is called the hash value, message digest, or simply hash (Preneel, 2005).

Good cryptographic hash functions have several important properties: they are

deterministic (the same message always results in the same hash), quick to

compute the hash value for any given message, infeasible to generate a message

from its hash value except by trying all possible messages (preimage resistance),

infeasible to find two different messages with the same hash (collision resistance),

and a small change to a message should change the hash value so extensively that

the new hash value appears uncorrelated with the old hash value (avalanche effect).

Hashing is widely used for data integrity verification (e.g., checksums), password

storage, and in digital signatures. Examples include SHA-256 and SHA-3

ix. Digital Signatures:

A digital signature is a mathematical scheme for verifying the authenticity

of digital messages or documents (Goldwasser et al., 1988). A valid digital

signature, where the prerequisites are satisfied, gives a recipient very high

confidence that the message was created by a known sender (authentication), that

30

the sender cannot deny having sent the message (non-repudiation), and that the

message was not altered in transit (integrity). Digital signatures typically use

asymmetric cryptography. The sender uses their private key to create the signature,

and the recipient uses the sender's public key to verify it

x. Public Key Infrastructure (PKI):

PKI is a set of roles, policies, hardware, software, and procedures needed

to create, manage, distribute, use, store, and revoke digital certificates and manage

public-key encryption (Adams & Lloyd, 2003). The purpose of a PKI is to facilitate

the secure electronic transfer of information for a range of network activities such

as e-commerce, internet banking, and confidential email. It relies on Certificate

Authorities (CAs) to issue digital certificates that bind public keys with respective

user identities.

2.3 Review of Existing Solutions and Technologies

2.3.1 Review of Current Systems

There is a multitude of applications available for encrypting and

decrypting files, employing a diverse array of algorithms such as RSA, DES,

3DES, AES, Blowfish, and others. Each tool often comes with its own set of

features, target audience, and usability considerations.

i. VeraCrypt:

This is a well-regarded, free, open-source disk encryption software

for on-the-fly encryption (OTFE). It is a fork of the discontinued TrueCrypt

project and has addressed many of the security concerns raised about its

predecessor (VeraCrypt - Free Open Source Disk Encryption with Strong

31

Security for the Paranoid, 2019). Users can encrypt entire partitions,

storage devices (like USB drives), or create encrypted virtual disk

"containers" that behave like regular disks. VeraCrypt supports strong

encryption algorithms like AES, Serpent, and Twofish, and allows for

cascading these ciphers for enhanced security (Sutherl, 2021). A distinctive

feature is its support for plausible deniability through hidden volumes and

hidden operating systems. While highly flexible and secure, VeraCrypt is

primarily geared towards users with a good degree of technical knowledge

due to its relatively complex setup and the conceptual understanding

required for volume encryption versus individual file encryption. Its

strength lies in full-disk and partition encryption rather than quick, ad-hoc

file encryption for the average user.

ii. AxCrypt:

This is a lightweight file encryption software designed primarily for

individual users on Windows, emphasizing simplicity and ease of use

(AxCrypt - File Security Made Easy, n.d.). It offers AES-128 encryption in

its free version and AES-256 in its premium versions. Its seamless

integration with the Windows Explorer context menu allows users to

encrypt and decrypt files directly, enhancing usability. Features include

password-based encryption, secure file sharing, and a simple drag-and-drop

interface, making it appealing to non-technical users. However, its

functionality is mainly file-level encryption and does not extend to full-disk

or partition encryption. Historically, its lack of robust Linux compatibility

and the reservation of more advanced features for premium editions have

limited its accessibility to a broader audience, although recent versions have

32

expanded platform support.

iii. GnuPG (GNU Privacy Guard):

This application is a free, open-source implementation of the

OpenPGP standard, providing robust encryption and signing capabilities

(GnuPG, 2019). It is highly versatile, supporting various symmetric and

asymmetric algorithms, and is widely used for encrypting emails, files, and

disk partitions. GnuPG is a command-line tool by nature, which makes it

extremely powerful for scripting and integration into other applications but

presents a steep learning curve for less technical users (The GNU Privacy

Handbook, n.d.). Several graphical front-ends exist (e.g., Kleopatra, GPG

Suite) to improve usability, but the underlying concepts of key management

(public/private keys, web of trust) can still be challenging. Its strength is in

its adherence to open standards and its strong community support.

iv. BitLocker:

BitLocker Drive Encryption is a full-volume encryption feature

included with select editions of Microsoft Windows (Microsoft, 2024). It is

designed to protect data by providing encryption for entire volumes. BitLocker

uses AES in CBC or XTS mode with a 128-bit or 256-bit key. It can use a

Trusted Platform Module (TPM) to protect the integrity of the startup process

and the encryption keys. While very effective for protecting data at rest on

Windows systems, especially against offline attacks if a device is lost or stolen,

its primary focus is full-disk encryption, and it is not designed for encrypting

individual files for sharing across different platforms (particularly non-

Windows systems). Its ease of use for basic full-disk encryption on supported

33

Windows versions is a significant advantage for Windows users.

2.3.2 Comparison of Technologies

Secure data protection solutions are fundamentally based on encryption

algorithms, each possessing distinct advantages, disadvantages, performance

characteristics, and ideal use cases. These methods are broadly categorized into

symmetric and asymmetric encryption, with hybrid approaches combining

elements of both. The selection of an appropriate algorithm and approach is

frequently dictated by the specific requirements, constraints, and threat model

of the application (Mushtaq et al., 2017).

i. Symmetric Encryption Algorithms:

Techniques such as AES, DES, and Blowfish use a single, shared

key for both encrypting plaintext and decrypting ciphertext. This shared-

key paradigm makes these algorithms computationally efficient,

particularly for processing large datasets quickly (Stallings & Brown,

2012). Symmetric encryption excels in scenarios like encrypting large files,

databases, or securing high-speed network connections due to its

computational speed and efficiency. However, the cornerstone of

symmetric encryption's security is the secrecy of the shared key, and its

secure exchange between parties is a critical challenge. Distributing this

key safely, especially over untrusted networks, is difficult, as interception

by unauthorized individuals compromises all data encrypted with that key

(Kaufman et al., 2020). Furthermore, for large systems or multi-user

environments, managing unique keys for every pair of users becomes

34

impractical (N^2 key problem), leading to potential inefficiencies and

complexities in key management.

ii. Asymmetric Encryption Algorithms:

Algorithms like RSA, ECC (Elliptic Curve Cryptography), and

Diffie-Hellman employ a pair of keys: a public key for encryption (or

signature verification) and a private key for decryption (or signature

generation). This separation simplifies key distribution as the public key

can be shared openly without compromising the private key, thus enhancing

security in multi-user settings (Boneh & Shoup, 2017). Asymmetric

encryption is particularly effective where multiple users need to

communicate securely or when digital identities need to be verified. It is

extensively used for digital signatures to ensure message authenticity and

integrity, and for secure key exchange protocols like those in HTTPS/TLS.

The primary drawback of asymmetric algorithms is their computational

intensity; they are significantly slower than symmetric algorithms and are

not suitable for encrypting large volumes of data directly. This often leads

to their use in hybrid systems.

iii. Hybrid Encryption Systems:

To leverage the strengths of both symmetric and asymmetric

cryptography, many contemporary encryption systems employ a hybrid

approach (Bishop, 2018). In a typical hybrid system, an asymmetric

algorithm is used to securely exchange or encrypt a randomly generated

symmetric key. This symmetric key is then used with a faster symmetric

algorithm to encrypt the actual bulk data. This combination offers a

practical balance: the efficiency of symmetric encryption for the data itself,

35

and the secure key distribution advantages of asymmetric encryption for

the session key. This is a common model for applications like encrypted

email (e.g., PGP/GnuPG), secure file transfer (e.g., SFTP), and secure web

communication (TLS/SSL).

iv. Performance Considerations:

When selecting an encryption method, performance is a crucial factor,

particularly for applications like "LockMe" that aim to provide real-time or

near real-time encryption and decryption capabilities for a user-friendly

experience. While asymmetric algorithms are vital for key management and

digital signatures, symmetric algorithms are generally favoured for their speed

in processing large files and data streams. AES, due to its strong security

profile, widespread industry adoption, hardware acceleration support in

modern processors, and efficient performance across various platforms, was

chosen as the main algorithm for LockMe. This choice ensures a balance

between robust security and acceptable performance for the target users

(Bernstein, 2008).

2.3.3 Gaps in Existing Solutions

Despite the wide availability of encryption tools and software, several

significant limitations and challenges persist, presenting opportunities to

enhance security, performance, usability, and key management. These

shortcomings underscore the need for more comprehensive, accessible, and

user-centric encryption solutions like the proposed LockMe system.

36

i. Usability:

Many currently available encryption solutions were primarily

designed with technically sophisticated users in mind, resulting in

interfaces and operational workflows that are overly complicated for non-

technical individuals.

These technologies often demand a thorough understanding of

multi-step configuration procedures, command-line interactions, or abstract

cryptographic concepts (e.g., key pairs, trust models). For instance, while

powerful programs like VeraCrypt and GnuPG offer robust encryption

features, their steep learning curves often deter regular users from adopting

them widely, thereby limiting their impact (Iacono et al., 2018). This

problem is exacerbated by the common absence of user-friendly error

messages, clear visual progress indicators, and intuitive drag-and-drop

functionality. Consequently, these solutions present a high barrier to entry,

leaving non-technical users who are frequently the most vulnerable to

cyberattacks underserved and potentially exposed (Salama et al., 2011).

Psychological barriers, such as fear of making mistakes or perceived

complexity, also play a significant role in low adoption rates (Sheng et al.,

2010).

ii. Performance:

System performance can be significantly impacted by encryption

and decryption processes, especially with asymmetric algorithms like RSA,

which are computationally demanding, particularly when handling large

files. Even with faster symmetric algorithms like AES, suboptimal software

implementations, lack of hardware acceleration utilization, or constraints

37

on device resources (CPU, RAM) can still degrade their effectiveness and

overall user experience (Dicle et al., 2024). Resource-intensive encryption

processes that slow down other system functions or lead to noticeable

delays can render existing solutions less feasible for users with older

hardware or less powerful devices. In real-time applications, where

encryption and decryption must occur almost instantaneously to avoid

disrupting user workflow, performance bottlenecks are particularly

apparent. These performance limitations often force users into a trade-off

between security and usability, thereby hampering the wider adoption of

robust encryption practices (Salama et al., 2011).

iii. Key Management:

The secure generation, storage, retrieval, and lifecycle management

of encryption keys remains a major challenge with many current solutions

(Gutmann, 2007). Numerous encryption technologies place the entire

burden of key management on the user, requiring them to manually

generate, store, backup, and retrieve keys. This manual approach

significantly increases the likelihood of human error, which can lead to

keys being misplaced, lost, forgotten, or inadvertently exposed to

unauthorized access (Fornetix, 2019).

Furthermore, some tools lack sufficient guidance or built-in secure

procedures for key management, leaving users vulnerable to security

breaches if keys are not handled correctly. The absence of automated, user-

friendly, or centralized key management solutions makes encryption

particularly cumbersome in scenarios involving multiple users,

collaborative encryption tasks, or long-term data archiving. Robust

38

encryption relies heavily on effective key management, yet this remains

one of the weakest aspects of many contemporary systems, often

overlooked by developers focusing solely on the cryptographic algorithms

themselves (Ahamad & Abdullah, 2016).

iv. Vulnerabilities & Implementation Flaws:

The overall security of an encryption solution is significantly

influenced not only by the chosen algorithm's strength (e.g., key length) but

also critically by how it is implemented and integrated (Kohno et al., 2010).

Algorithms that are poorly designed, use insufficiently short key lengths

(like the original 56-bit DES), or are incorrectly implemented can be

vulnerable to various cryptanalytic attacks, side-channel attacks (e.g.,

timing attacks, power analysis), or brute-force attacks. Even modern, strong

algorithms like AES and RSA can be rendered vulnerable if implemented

with weak keys, predictable random number generation, or incorrect mode

of operation choices (Katz & Lindell, 2021). Furthermore, the security of

currently used encryption techniques could be threatened in the future by

unforeseen advances in computing power, particularly the potential

development of large-scale quantum computers capable of breaking widely

used public-key algorithms (Agrawal, 2024). Addressing these

multifaceted problems requires careful algorithm selection, adherence to

cryptographic best practices, rigorous implementation testing, sound key

management protocols, and regular updates to encryption protocols and

software (Awad Al-Hazaimeh, 2013). The complexity of avoiding these

pitfalls means that even well-intentioned software can contain subtle but

critical vulnerabilities.

39

v. Accessibility for Specific User Groups (e.g., SMEs):

Many enterprise-grade encryption solutions are too expensive or

complex for Small to Medium-sized Enterprises (SMEs), while many free tools

lack the necessary support or features for business use (Institute, 2024). SMEs

often have limited IT resources and expertise, making them particularly

vulnerable yet underserved by the current market of encryption tools. There's

a gap for solutions that offer a balance of robust security, ease of deployment,

and affordability tailored to their specific needs.

2.4 Relevant Algorithms and Methodologies

2.4.1 Survey of Relevant Algorithms

A crucial component of creating the "LockMe: Secure File Encryption

and Decryption Desktop Application" is the judicious selection of appropriate

encryption methods. This choice profoundly impacts the application's security

posture, operational effectiveness, and overall usability. In particular,

symmetric-key algorithms are highly pertinent to this project due to their

inherent speed, computational efficiency, and proven capacity to encrypt large

files effectively. Among the plethora of available algorithms, the following are

of significant importance and relevance to the LockMe application:

i. Advanced Encryption Standard (AES):

AES, originally known as Rijndael, is the de facto industry standard

for symmetric encryption and has been widely adopted across numerous

sectors globally since its selection by the U.S. National Institute of

Standards and Technology (NIST) in 2001 (Dworkin et al., 2001).It offers

40

an elevated level of flexibility and resilience against brute-force attacks and

other cryptanalytic techniques by supporting key lengths of 128, 192, and

256 bits.

AES operates on fixed-size blocks of 128 bits and employs a series

of substitution-permutation network (SPN) operations over multiple rounds

(10 rounds for 128-bit keys, 12 for 192-bit, and 14 for 256-bit keys) to

ensure that data is securely and thoroughly jumbled. Its high efficiency in

both hardware (often with dedicated CPU instructions) and software

implementations makes it an optimal choice for file encryption in LockMe

(Daemen & Rijmen, 2002). The algorithm's widespread acceptance as a

global standard, extensive scrutiny by the cryptographic community, and

proven track record further support its compatibility and dependability

(Mushtaq et al., 2017). Current NIST guidance affirms the security of AES

with all three key sizes for protecting sensitive information.

ii. Blowfish:

Developed by Bruce Schneier in 1993, Blowfish is another well-

known symmetric encryption algorithm recognized for its speed and

simplicity (Schneier, 2019). It is a 64-bit block cipher that offers flexibility

by supporting variable key lengths ranging from 32 bits up to 448 bits.

Blowfish was designed to be fast, free of patents, and unencumbered by

licensing fees, leading to its adoption in a variety of software. Because

Blowfish is performance-optimized, it is particularly well-suited for

applications requiring rapid encryption and decryption, such as embedded

systems or real-time communication. However, when working with larger

files, its 64-bit block size could be a drawback compared to AES's 128-bit

41

blocks, potentially making it more vulnerable to certain cryptographic

attacks like the birthday attack if used improperly over very large amounts

of data with the same key (Schneier et al., n.d.). Despite this, Blowfish's

simplicity and efficiency make it a solid choice for light to moderate

encryption workloads where extreme security against state-level attackers

is not the primary concern (Mushtaq et al., 2017).

iii. Data Encryption Standard (DES):

DES was one of the first symmetric encryption algorithms to be

widely adopted internationally. Developed at IBM in the early 1970s and

adopted as a U.S. federal standard in 1977, DES operates on 64-bit blocks

of data and uses a 56-bit key (Technology, 1977). Although DES laid the

foundational principles for many contemporary encryption methods and

was considered secure for its time, its relatively short 56-bit key length

eventually rendered it vulnerable to brute-force attacks as computational

power increased significantly (Foundation, 1998).

Consequently, DES is now considered outdated and insecure for

most modern applications. The shortcomings of DES, despite its historical

importance in the development of cryptography, underscore the critical

need for more robust algorithms with larger key sizes and greater resistance

to cryptanalysis, such as AES and even Blowfish for certain contexts

(Mushtaq et al., 2017).

iv. Triple Data Encryption Standard (3DES or TDEA):

By applying the DES algorithm three times in succession to each

data block, 3DES (Triple DES) was developed as an enhancement over the

42

original DES to extend its longevity and address the key size vulnerability

(3DES: Triple Encryption Standard Explained, 2025).

It typically uses two or three distinct 56-bit keys (effectively

providing 112-bit or 168-bit key strength, respectively, though susceptible

to meet-in-the-middle attacks reducing effective strength). Compared to

DES, this significantly strengthens the encryption, increasing its resistance

to brute-force attacks.

However, 3DES is considerably slower and more computationally

demanding than more modern algorithms like AES, as it involves

performing the DES encryption/decryption process three times. While

3DES is still found in some legacy systems, particularly in the financial

industry for a time, more effective, secure, and efficient alternatives like

AES are now typically recommended and are progressively replacing it

(Mushtaq et al., 2017).

v. Relevance to the Current Project:

For the LockMe application, speed, robust security, and ease of

implementation are top priorities to ensure a smooth and trustworthy user

experience, especially for non-technical users. Symmetric-key algorithms

like AES are the best option for file encryption and decryption because they

strike an excellent balance between strong security guarantees and efficient

computational performance (Jajodia et al., 2024). The goals of LockMe are

well-aligned with AES's demonstrated dependability, its support in

numerous cryptographic libraries, hardware acceleration capabilities, and

its capacity to manage large datasets without a significant performance

sacrifice. Due to its larger block size (128 bits vs. Blowfish's 64 bits),

43

widespread global standardization, and superior security against known

attacks, AES (specifically AES-256 for maximum security within

LockMe's scope) is the recommended and chosen primary algorithm for

this project. While Blowfish could offer an option for light-duty workloads,

standardizing on AES simplifies development and ensures a consistent

security level. Algorithms like DES and 3DES, despite their historical

significance, are generally considered inappropriate for new development

like LockMe because they do not satisfy the security and performance

criteria of contemporary encryption requirements. By leveraging the

advantages of AES, LockMe can ensure that users receive a strong,

effective, and user-friendly encryption solution that meets the demands of

the current cybersecurity environment.

2.4.2 Implementation Approaches

The development of the "LockMe: Secure File Encryption and

Decryption Desktop Application" calls for a methodical and effective

implementation strategy that correctly integrates the chosen encryption

methods. To ensure the application is dependable, secure, and easy to use, this

procedure entails selecting the appropriate programming language(s), utilizing

well-vetted cryptography libraries, adhering to secure coding best practices,

and following a robust software development lifecycle (Howard & Leblanc,

2009).

Programming Languages for Development

Several programming languages are suitable for implementing file

44

encryption and decryption functionalities in the LockMe application. The

choice often depends on factors like cross-platform capabilities, availability of

mature cryptographic libraries, developer expertise, performance

requirements, and ease of GUI development.

i. Java

This is a popular platform-independent and versatile programming

language renowned for creating secure and portable applications (Gosling

et al., 2015). Its strong security features, extensive standard library, and rich

ecosystem of third-party libraries, including the Java Cryptography

Extension (JCE) and Bouncy Castle, make it a compelling option for

implementing encryption techniques. The JCE provides a framework and

implementations for encryption, key generation and management, and other

cryptographic functions (Oracle, n.d.). Bouncy Castle is a widely used

open-source library that offers a vast array of cryptographic algorithms and

protocols, often including newer or less common ones not found in the

standard JCE (Bouncycastle.Org, n.d.). Because of Java's "write once, run

anywhere" philosophy, the LockMe application developed in Java can

function consistently on both Windows and Linux (and other operating

systems supporting a JVM), serving a wide range of users. GUI

development can be achieved using frameworks like Swing or JavaFX.

ii. Python

Python is a highly regarded option for developing cryptographic

applications due to its simplicity, readability, and extensive library support

45

(Lutz, 2018). Python developers can readily implement encryption methods

like AES and RSA with the aid of well-maintained libraries such as

PyCryptodome and the ‘cryptography’ package (Hazmat). PyCryptodome

is a fork of the older PyCrypto library and offers a comprehensive set of

cryptographic primitives (Welcome to PyCryptodome’s Documentation —

PyCryptodome 3.15.0 Documentation, n.d.). The ‘cryptography’ library

aims to be a "cryptography for humans" library, providing high-level

recipes and low-level interfaces for common cryptographic tasks (Welcome

to Pyca/Cryptography — Cryptography 42.0.0.Dev1 Documentation, n.d.).

Python is excellent for rapid development and prototyping of the LockMe

application due to its ease of use and concise syntax. Furthermore, Python's

cross-platform capabilities, combined with GUI frameworks like Tkinter,

PyQt, or Kivy, align well with the project's objective of ensuring

compatibility across multiple operating systems.

iii. C++

For resource-intensive cryptographic processes, the fine-grained

control over system resources and high performance offered by C++ can be

beneficial (Stroustrup, 2013). Libraries such as OpenSSL and Crypto++

provide dedicated support for implementing a wide range of encryption and

decryption features. OpenSSL is a robust, commercial-grade, and full-

featured toolkit for the Transport Layer Security (TLS) and Secure Sockets

Layer (SSL) protocols and also a general-purpose cryptography library

(OpenSSL Foundation, 2019). Crypto++ is a free C++ class library of

cryptographic schemes (Crypto++ Library 8.6 | Free C++ Class Library

of Cryptographic Schemes, n.d.). C++ can deliver unmatched speed and

46

efficiency, especially for applications that manage very large files or

require real-time encryption with minimal overhead. However, its

complexity, manual memory management (in older versions), and longer

development cycles may necessitate more extensive development effort

and expertise. GUI development can be done with frameworks like Qt or

WxWidgets.

Cryptographic Libraries and Frameworks

Cryptographic libraries are crucial components for implementing

encryption algorithms correctly and securely. They offer pre-built, optimized,

and thoroughly tested functions that significantly reduce development time,

minimize the risk of common implementation errors, and help ensure that the

cryptographic operations are secure (Yadavalli, n.d.). The libraries listed below

are highly pertinent to the project:

i. PyCryptodome (Python)

Supports a vast array of encryption methods including AES, RSA,

and Blowfish. It provides secure and efficient implementations of

cryptographic primitives and is relatively straightforward to integrate into

Python programs.

ii. Java Cryptography Extension (JCE)

JCE is a standard Java API providing extensive support for secure

data storage, key generation, and encryption. Bouncy Castle augments JCE

with a wider range of algorithms and utilities, making it a dependable

47

choice for Java-based cryptographic development.

iii. Crypto++ (C++)

A free, open-source C++ library supporting numerous encryption

methods and cryptographic tools. It is valued for its performance,

flexibility, and suitability for creating effective, high-security applications.

iv. OpenSSL (C++)

A widely adopted and robust library for implementing

cryptographic algorithms and protocols. Frequently utilized in secure

communication systems, it supports both symmetric and asymmetric

encryption and is known for its comprehensive feature set.

Development Frameworks

The application's cross-platform interoperability and usability are also

significantly influenced by the choice of development framework for the

Graphical User Interface (GUI). The selected programming language can be

paired with frameworks like:

i. Qt Framework

Enables the development of feature-rich, native-looking GUIs in

C++ with excellent cross-platform support for Windows, Linux, macOS,

and more (Company, 2019).

48

ii. Tkinter or PyQt (Python)

Tkinter is Python's standard GUI framework, suitable for simpler

interfaces, while PyQt (Python bindings for Qt) allows for more complex

and feature-rich GUI development in Python (Summerfield, 2007).

iii. JavaFX or Swing (Java)

JavaFX is a modern framework for creating rich client applications,

while Swing is an older but still widely used GUI toolkit for Java. Both

support cross-platform GUI development.

iv. Next.js + React (TypeScript)

React supplies a component-based UI, Next.js handles routing and

server-side rendering, and TypeScript adds static typing. Packaged as a

Progressive Web App or via containers such as Electron/Tauri, the same

code delivers a desktop-class interface on Windows, Linux, and other

platforms.

Secure Software Development Lifecycle (SSDLC)

It is crucial to follow an SSDLC approach, integrating security

considerations into every phase of development, from requirements gathering

to deployment and maintenance (Mcgraw, 2006). This includes threat

modelling, secure coding standards, regular code reviews, and comprehensive

security testing (static analysis, dynamic analysis, penetration testing).

49

Implementation Workflow

The implementation began with a detailed requirements-gathering

phase. Functional needs such as client-side AES-256-GCM encryption, secure

key generation, drag-and-drop uploads, and clear progress messages were

documented alongside non-functional targets for speed, usability, and full

support on both Windows and Linux. File formats and performance

benchmarks were set so that later testing could measure success objectively.

A combined architecture and UI design stage followed. Here, a modern

web stack that consists of Next.js, React, TypeScript, and the browser’s Web

Crypto API is selected, and drafted wire-frames that positioned drag-and-drop

zones, progress indicators, and simple navigation in a single-window layout.

With those blueprints in place, developers wired up the cryptography layer:

keys are generated with secure randomness, and AES-256-GCM handles both

encryption and integrity in one pass. The React interface came next, styled with

Tailwind CSS and ShadCN components to keep the visuals clean and

consistent, while real-time status messages and error banners guided users

through each step.

Core logic then bridged the gap between UI and cryptography. File

readers passed local data to the encryption engine and wrote the resulting

.lockme output, while auxiliary modules managed key storage and AI helpers

such as the passphrase generator and strength checker. Testing was iterative:

unit tests covered components and crypto functions, integration tests exercised

full workflows, and usability sessions ensured non-technical users could

complete tasks easily. Security scans and performance profiling rounded out

the quality checks.

50

Deployment packaged the web build through Vercel for immediate

browser access and wrapped the same codebase in Electron/Tauri to produce

native installers for Windows and Linux. Final steps included drafting a concise

user guide, documenting the internal API, and setting a maintenance plan that

defines branching rules and release cadence. Together, these phases turn a

secure cryptographic core into an accessible desktop-grade application,

balancing technical rigour with everyday usability.

2.4.3 Evaluation Metrics

A set of clearly defined assessment metrics can be used to evaluate the

project's security, effectiveness, performance, and usability. These metrics

ensure that the application not only meets its functional requirements but also

complies with industry standards for secure and efficient encryption and aligns

with user expectations. The evaluation focuses on measurable factors crucial

for assessing the application's success, such as processing speed, resource

utilization, resilience to attacks, and user satisfaction. An extended explanation

of the main evaluation metrics is provided below:

1. Encryption/Decryption Speed

This metric refers to the time taken for the application to process files

of various sizes (e.g., small <1MB, medium 1-100MB, large >100MB) and

types (text, images, compressed archives, videos). It is essential for evaluating

the efficiency of the implemented algorithms (especially AES) and their

practical applicability for real-time or interactive use cases (Schneier et al.,

n.d.). A high-performing encryption program should operate with minimal lag,

51

providing users with responsive and seamless experiences. Testing involves

measuring average and maximum processing times under controlled conditions

to ascertain the application's throughput and identify potential bottlenecks. For

users who routinely encrypt/decrypt numerous files or manage huge datasets,

this statistic is very important. Speed gains can be achieved by minimizing

code bottlenecks, optimizing the algorithm's implementation (e.g., leveraging

hardware AES instructions if available), and efficient file I/O operations.

2. Throughput

This measures the amount of data (e.g., in MB/second) that the

application can handle during encryption and decryption operations per unit of

time. It serves as a gauge of the program's scalability and overall processing

power, especially relevant when users need to encrypt or decrypt multiple files

simultaneously or handle very large individual files. High throughput figures

indicate the system's capability to manage bulk processes efficiently, making

it suitable for individuals or small businesses dealing with substantial datasets.

Throughput is assessed through controlled trials where a predetermined

volume of data is processed by the application over a fixed period, with

outcomes compared against industry benchmarks or similar tools. This metric

complements encryption/decryption speed by providing a broader picture of

the system's data-handling capabilities.

3. Resource Consumption (CPU, Memory, Disk I/O)

This assesses how the encryption and decryption procedures impact the

system's hardware resources, specifically CPU utilization (percentage),

memory footprint (RAM usage in MB), and disk I/O rates. Ensuring the

52

application remains lightweight and does not excessively overload the user's

device is particularly crucial for users with older hardware, limited resources,

or when running multiple applications concurrently (Provos, 2000). Excessive

CPU or memory usage can lead to system slowdowns and poor user

experience, while high power consumption can shorten the battery life of

portable devices. Performance monitoring tools are used to measure resource

usage during intensive encryption/decryption processes, providing insights

into the program's efficiency and its optimization requirements. A key design

objective for LockMe is to maintain a balance between strong security and

resource efficiency.

4. Security Analysis (Vulnerability Assessment & Cryptographic Robustness)

This is a critical indicator for assessing the resilience of the encryption

algorithms as implemented and their ability to resist various types of attacks.

The analysis involves testing the application against known vulnerabilities and

cryptographic best practices, including:

• Brute-Force Attack Resistance: Evaluating the encryption keys'

resilience to exhaustive search efforts, where every potential key is

methodically tried. Robustness is ensured by using strong encryption

methods like AES with appropriately long key lengths (e.g., 256 bits),

making brute-force computationally infeasible (Lenstra & Verheul,

2001).

• Known Plaintext/Ciphertext Attacks: Assessing if knowledge of some

plaintext-ciphertext pairs compromises the key or subsequent

encryptions.

53

• Differential and Linear Cryptanalysis Resistance: Evaluating the

algorithm's (and its implementation's) resistance against advanced

cryptanalytic techniques that analyse ciphertext variations resulting

from specific plaintext modifications or statistical linear

approximations (Biham & Shamir, 1993). While AES itself is designed

to resist these, implementation flaws could introduce weaknesses.

• Side-Channel Attack Considerations: Assessing, at least conceptually,

how resistant the program might be to attacks that exploit information

leaks from the physical implementation (e.g., timing variations, power

consumption, electromagnetic emissions) during the encryption

process. Mitigation might involve using constant-time operations

where feasible (Kocher et al., 1999).

• Key Management Security: Verifying that key generation uses

cryptographically secure pseudo-random number generators

(CSPRNGs), keys are stored securely (e.g., encrypted at rest,

appropriate permissions), and key handling practices minimize

exposure (Barker, 2020).

• Correct Use of Cryptographic Primitives: Ensuring proper use of modes

of operation (e.g., avoiding ECB for most uses, using authenticated

encryption modes like AES-GCM), correct handling of Initialization

Vectors (IVs)/nonces (uniqueness, unpredictability where required).

• Verifying that the program complies with best practices for secure data

processing and cryptographic standard implementation is a vital aspect

of security analysis. Addressing possible security threats during the

assessment stage ensures LockMe can provide users with a dependable

54

and trustworthy encryption solution.

5. User Experience (UX) Metrics & Usability Testing

While not directly linked to cryptographic security or raw performance,

UX metrics provide crucial information about how usable, learnable, and

satisfying the program is for its intended audience, especially non-technical

users. These indicators are typically obtained through:

• Task Completion Rates: Percentage of users who successfully complete

core tasks (e.g., encrypt a file, decrypt a file, manage a key) without

assistance.

• Time on Task: Average time taken by users to complete specific tasks.

• Error Rates: Frequency and types of errors users encounter.

• System Usability Scale (SUS): A standardized questionnaire providing

a global measure of system usability (Brooke, 1995).

• User Satisfaction Surveys/Feedback: Qualitative feedback on ease of

use, clarity of interface, responsiveness, and overall satisfaction.

• A satisfying user experience, characterized by intuitive design, clear

instructions, and minimal friction, guarantees that the application will

be widely adopted and effectively used, especially by non-technical

users who are a primary target for LockMe.

6. Scalability

This metric assesses the application's ability to handle increasing

amounts of data or a growing number of files without significant degradation

in performance or stability (Bondi, 2000). For LockMe, this would involve

55

testing how well it performs when encrypting very large files (e.g., several

GBs) or a large number of smaller files in a directory (if batch processing were

a feature).

7. Interoperability Testing

Given LockMe's cross-platform goals (Windows and Linux),

interoperability testing is crucial. This involves verifying that files encrypted

on one platform can be successfully decrypted on the other, and that the

application functions consistently across both operating systems

(Interoperability Software Testing, 2019). This includes checking for issues

related to file path conventions, character encodings, and dependencies.

2.5 State of the Art in the Field

2.5.1 Recent Advances

The efficiency of encryption techniques and the broader field of data

security have been significantly improved by recent, rapid developments in

cryptography. These advancements address emerging challenges posed by

growing computational power (including the looming threat of quantum

computers), evolving online dangers, and the increasing societal demand for

easily navigable and highly secure encryption solutions. The development of

novel algorithms, cryptographic protocols, and methodologies, such as the

ongoing standardization of Post-Quantum Cryptography (PQC) and

advancements in areas like Homomorphic Encryption (HE) and lightweight

cryptography, stands out among these developments, presenting encouraging

answers for enhanced security and attack resistance.

56

a. HiSea Algorithm

A major advancement in cryptographic techniques, the HiSea

algorithm was created to fix flaws in conventional encryption schemes.

With its emphasis on excellent security and computational efficiency,

HiSea is a lightweight block cypher that works well in resource-constrained

settings like embedded systems, mobile platforms, and Internet of Things

(IoT) devices. Its design incorporates several advanced features (Dhany et

al., 2018):

i. Enhanced Key Schedule: Subkeys are essential for every encryption

round, and HiSea's strong key scheduling system guarantees their safe

creation. As a result, the technique is impervious to attacks including

differential and linear cryptanalysis.

ii. Optimized Performance: By striking a balance between speed and

security, HiSea is able to encrypt and decrypt data effectively without

sacrificing its defences against intrusions. Applications that need real-

time encryption, including secure communications and video streaming,

will especially benefit from this.

iii. Scalability: The algorithm's ability to accommodate various key lengths

offers flexibility according to the application's security needs.

HiSea solves the difficulties of deploying cryptographic algorithms

on devices with constrained processing power by combining these aspects,

which also improves security.

57

b. Post-Quantum Cryptography (PQC)

The development of post-quantum cryptographic algorithms

represents one of the most critical recent advancements in cryptography,

driven by the anticipated threat from large-scale quantum computers

(Bernstein & Lange, 2017). Quantum computers, if realized with sufficient

power, could use Shor's algorithm to break currently secure public-key

encryption techniques like RSA and ECC (Elliptic Curve Cryptography)

(Shor, 1997). In response, the U.S. National Institute of Standards and

Technology (NIST) has been spearheading a multi-year process to

standardize PQC algorithms designed to be secure against both classical

and quantum attacks (Swayne, 2023).

Promising candidates that have emerged and are moving towards

standardization include lattice-based schemes (e.g., CRYSTALS-Kyber for

key encapsulation and CRYSTALS-Dilithium for signatures), hash-based

signatures (e.g., SPHINCS+), code-based schemes (e.g., Classic

McEliece), and multivariate polynomial cryptography.

These techniques are based on mathematical problems believed to

be hard for quantum computers to solve.

c. Homomorphic Encryption (HE)

Homomorphic Encryption represents a paradigm shift in

cryptography, allowing computations to be performed directly on encrypted

data without needing to decrypt it first (Homomorphic Encryption, 2025).

This development is highly pertinent in scenarios like secure cloud

computing, where sensitive data must be processed by third-party services

without exposing the plaintext data to the service provider (Armknecht et

58

al., 2015). Fully Homomorphic Encryption (FHE) schemes, such as those

based on lattice cryptography (e.g., BGV, BFV, CKKS), enable arbitrary

computations (both addition and multiplication) on encrypted data, opening

doors to secure data analytics, privacy-preserving machine learning, and

secure outsourced computations.

While FHE is still computationally intensive, significant progress

has been made in improving its efficiency and practicality for real-world

applications.

d. Lightweight Cryptography

In addition to specialized algorithms like HiSea, there's a broader

field of lightweight cryptography focusing on algorithms tailored for

resource-constrained devices, common in Internet of Things (IoT)

environments, RFID tags, and embedded systems (Beaulieu et al., 2013).

These devices often have limited processing power, memory, and energy.

NIST also ran a Lightweight Cryptography (LWC) competition to

standardize algorithms suitable for these environments, with ASCON being

selected (Computer Security Division, 2017). LWC algorithms (like

SIMON, SPECK, PRESENT, and the standardized ASCON family)

prioritize smaller footprint (code size, RAM usage), lower energy

consumption, and faster processing rates on constrained hardware, while

still providing strong security against relevant threats.

e. Advanced Security Features in Modern Systems

Modern cryptographic systems also incorporate additional security

features, including:

59

i. Zero-Knowledge Proofs (ZKPs): ZKPs enable one party (the prover) to

prove to another party (the verifier) that a statement is true, without

revealing any information beyond the validity of the statement itself

(Goldreich et al., 1991). This technology is finding growing

applications in areas like privacy-preserving authentication, blockchain

technology (e.g., Zcash, Monero), and identity verification where

privacy is paramount.

ii. Blockchain-Based Cryptographic Protocols: Blockchain technology,

inherently reliant on cryptographic primitives like hash functions and

digital signatures, has spurred advancements in areas like decentralized

key management systems, secure consensus mechanisms, and auditable

transparent ledgers (Narayanan et al., 2016). These developments aim

to enhance the security, transparency, and resilience of distributed

systems.

iii. AI-Driven Cryptographic Analysis & Threat Detection: Machine

learning (ML) and Artificial Intelligence (AI) techniques are

increasingly being applied to assess the security of cryptographic

protocols, identify potential vulnerabilities in implementations, and

detect anomalous behaviour indicative of cyberattacks (Al-Fuqaha et

al., 2015). Conversely, cryptography is also being used to protect the

privacy and integrity of AI models and training data.

iv. Authenticated Encryption with Associated Data (AEAD): Modern

symmetric encryption schemes increasingly emphasize AEAD modes

(e.g., AES-GCM, ChaCha20-Poly1305) which simultaneously provide

confidentiality, integrity, and authenticity of encrypted data (Rogaway,

60

2002). This is a significant improvement over older approaches where

confidentiality and integrity were often handled as separate, potentially

error-prone steps.

2.5.2 Trends and Future Directions

The field of cryptography is dynamic, constantly evolving to address

new threats and leverage new technological capabilities. Several key trends and

future directions are shaping the landscape:

a. Transition to Post-Quantum Cryptography (PQC)

As quantum computing technology matures, the migration from

current public-key algorithms (RSA, ECC) to PQC standards is becoming

a major focus for organizations worldwide (Moody et al., 2020).

NIST is standardizing algorithms like CRYSTALS-Kyber and

NTRU for key establishment and CRYSTALS-Dilithium and Falcon for

digital signatures.

Future developments will involve the widespread integration of

these quantum-resistant algorithms into internet protocols (TLS, SSH),

operating systems, and critical infrastructure sectors like finance and

healthcare. Hybrid cryptography systems, which combine classical and

PQC algorithms during a transition period, will likely be implemented to

ensure ongoing security and backward compatibility as quantum

technology advances.

61

b. Advancements in Fully Homomorphic Encryption (FHE)

FHE allows computations on encrypted data without prior

decryption, offering revolutionary possibilities for privacy in data

processing, particularly for applications in healthcare, finance, and secure

cloud computing (Brakerski et al., 2014).

Future research will continue to focus on improving computational

efficiency and reducing the ciphertext expansion of FHE schemes to make

them more practical for real-time, large-scale applications. Its integration

into privacy-preserving machine learning (PPML) will enable the training

and querying of AI models on sensitive data without disclosing the

underlying confidential information.

c. Proliferation of Lightweight Cryptography (LWC)

With the exponential growth of IoT devices and wearables, the

demand for lightweight cryptography designed for resource-constrained

environments is rapidly increasing (McKay et al., 2017). Algorithms that

offer robust security with minimal computational cost, low power

consumption, and small memory footprints are essential. Standardization

initiatives, such as NIST's selection of the ASCON family, are setting

benchmarks for secure IoT applications. These developments will facilitate

secure communication and data protection across a vast and diverse array

of interconnected devices.

d. AI and Machine Learning in Cryptography and Security

Cryptography is increasingly incorporating machine learning (ML)

and artificial intelligence (AI) to enhance system functionality and security

62

(Chalapathy & Chawla, 2019). AI is being utilized to develop optimized

encryption algorithms, automate the discovery of vulnerabilities in

cryptographic protocols, and build adaptive security systems that can

respond dynamically to new and evolving threats. Conversely,

cryptographic techniques are being integrated into AI workflows to protect

sensitive training data and models (e.g., via differential privacy, FHE, or

secure multi-party computation), ensuring privacy and integrity in AI-

driven applications. The synergy between AI and cryptography is shaping

the future of secure and intelligent systems.

e. Blockchain-Based Cryptography and Decentralized Systems

Blockchain technology, leveraging cryptographic primitives like

hash functions and digital signatures, continues to drive innovation in

secure decentralized systems (Zheng et al., 2017). Blockchain-based

identity systems aim to provide secure and user-controlled decentralized

authentication. Newer privacy-enhancing technologies like zero-

knowledge proofs (ZKPs) are improving privacy in blockchain transactions

and other applications. Furthermore, research into scalable and efficient

consensus mechanisms is ongoing to reduce the computational load on

blockchain networks, making them more accessible and sustainable for a

wider range of use cases, including secure supply chain management and

decentralized finance (DeFi).

f. Federated Learning with Encryption

Federated Learning (FL) allows multiple parties to collaboratively

train a machine learning model without sharing their raw data, enhancing

63

privacy (McMahan et al., 2017).

To further protect the model updates (gradients or weights)

exchanged during this process, encryption techniques like homomorphic

encryption or secure aggregation are being integrated into FL frameworks.

This trend aims to provide stronger privacy guarantees against

inference attacks on the model updates themselves.

g. Emphasis on Usable Security and Privacy by Design

There is a growing recognition that even the strongest cryptographic

systems are ineffective if users cannot use them correctly or are bypassed

due to complexity (Cranor & Garfinkel, 2005). Future developments will

increasingly focus on "usable security" and "privacy by design" principles,

embedding security and privacy considerations into the earliest stages of

system design and prioritizing user-friendly interfaces and workflows. This

includes better error messaging, clearer indicators of security status, and

more intuitive key management processes to lower the barrier for adoption

by non-expert users.

2.6 Critical Review of Similar Products or Systems

2.6.1 Review of Similar Projects

A wide range of file encryption tools is available, each utilizing unique

algorithms and offering diverse security functionalities and user experiences.

Among the most prominent are Hat.sh and Enc, which serve as valuable

references for assessing encryption solutions. Other notable systems include

VeraCrypt for full-disk encryption and AxCrypt for user-friendly file

64

encryption, each with its own strengths and weaknesses in terms of usability,

feature set, and target audience. The user experience offered by these tools

varies significantly, from highly technical command-line interfaces to more

intuitive graphical approaches (Cranor & Garfinkel, 2005).

a. Hat.sh

Figure 2.0.1 Logo of Hat.sh

Hat.sh is a browser-based, lightweight solution for secure file

encryption and decryption that does not require installation. Its main goals are

accessibility and ease of use, allowing users to carry out encryption operations

right within their browser. The program uses the AES-GCM encryption

algorithm, a reliable and effective standard that incorporates authentication to

guard against file manipulation. Hat.sh's dedication to privacy is one of its best

qualities; all encryption and decryption procedures take place locally on the

user's computer, guaranteeing that no data is sent over the internet.

Additionally, because the program is platform-independent, it may be used on

a variety of devices using contemporary web browsers. Because Hat.sh is open-

source, developers can examine, alter, and contribute to its code, adding an

extra degree of flexibility and confidence (sh-dv, 2022).

65

Figure 2.0.2 Interface of Hat.sh

Hat.sh has certain drawbacks that prevent its wider use, despite its

benefits. Advanced features like file integrity checking and encryption key

management, which are necessary for more complicated or professional use

cases, are sacrificed in favour of the tool's basic design. Despite local

processing, its functionality is limited in situations when internet connectivity

is restricted or completely absent due to its dependence on a browser-based

environment. Additionally, because browser-based operations are not

optimised for extensive data processing, Hat.sh may experience performance

problems while handling huge files. By addressing these issues, such adding a

stand-alone version or improving important administrative functions, its

usefulness and appeal might be greatly increased.

66

b. Enc

Figure 2.0.3 Logo of Enc

For those who appreciate speed, versatility, and scripting capabilities,

Enc is a command-line file encryption tool. Enc is especially well-suited for

encrypting large files and automating encryption procedures since it makes use

of the AES encryption standard, which is renowned for its strong security and

computational efficiency. It is perfect for those with advanced technical

knowledge because of its simple architecture, which allows for easy integration

into batch processes and other command-line activities. Furthermore, Enc is

cross-platform, operating effectively on Linux, macOS, and Windows,

guaranteeing interoperability in a variety of settings. Because Enc is open-

source, users can alter its features to suit their own needs and build confidence

in its core security measures (life4, 2024).

67

Figure 2.0.4 Interface of Enc

However, non-technical users may find it difficult to understand text-

based commands due to Enc's emphasis on command-line execution. Because

the utility does not have a graphical user interface, people who are not familiar

with command-line operations cannot utilise it. Additionally, Enc has

integrated key management capabilities, so users are left to handle and store

encryption keys securely, a task that is prone to mistakes and security flaws.

Improvements like an optional GUI, integrated key management, and easily

navigable documentation would help Enc gain wider acceptance.

68

2.6.2 How This Project Differs

LockMe is designed to close the gaps left by well-known encryption

tools such as Hat.sh, Enc, VeraCrypt, and AxCrypt. By combining a modern

web stack (Next.js, React, and TypeScript) with client-side AES-256-GCM, it

delivers enterprise-grade protection in a package that ordinary users can

operate without a learning curve.

First, the interface sets LockMe apart. Hat.sh confines users to a bare-

bones browser page, and Enc requires command-line skill. LockMe, in

contrast, offers a full graphical desktop experience. Drag-and-drop zones let

users add files in one motion, while real-time progress bars and clear error

messages remove the guesswork. Because the application is bundled as an

Electron or Tauri desktop build, it runs entirely offline; network restrictions or

browser quirks never block core functions.

Second, LockMe provides true cross-platform consistency. Unlike

Hat.sh, which is limited by whatever browser happens to be installed, or

AxCrypt, which ties key features to Windows, one LockMe build serves both

Windows and Linux without compromise. Native file-system access allows it

to process multi-gigabyte archives far beyond the practical limits of browser-

based tools, yet it retains the single-code-based simplicity prized by Enc.

Finally, the project bridges the usability gap between tools that are too

technical and those that oversimplify security. Non-technical users benefit

from step-by-step workflows that hide cryptographic detail. Technical users

still gain the full strength of AES-256 and solid key management, and the

design leaves room for future advanced options such as custom cipher suites

without cluttering the main interface.

69

In short, LockMe offers the rich interface of a native desktop app, the

portability of a browser solution, and the cryptographic strength of professional

suites, delivering a secure and approachable alternative for users at every skill

level.

70

2.6.3 Comparison Between Similar Systems and Proposed System

Table 0.1 Comparison table between systems

Name of

Application

Hat.sh

Enc

LockMe

Description A lightweight, web-based file
encryption tool that enables

users to encrypt and decrypt files

directly through their browser

using AES-256 encryption.

A developer-focused encryption
library that supports multiple

algorithms, designed for easy

integration into applications and

optimized for performance.

A file encryption and decryption
application offering AES-256

encryption, secure key

management, and cross-platform
compatibility for Windows and

Linux users.

Strengths
a) Lightweight and web-

based: Hat.sh allows users

to encrypt and decrypt files

directly through a browser
without requiring

installation, offering

portability and ease of use.
b) Secure encryption: The

application employs AES-

256 encryption, ensuring
strong protection for user

data.

c) Open-source and
transparent: As an open-

source project, Hat.sh

allows users to inspect its
code and ensure its

reliability, fostering trust

and community
contributions.

a) Developer-focused
functionality: Enc is

specifically designed for

easy integration into other
projects, making it ideal

for developers.

b) Support for multiple
algorithms: It supports

various encryption

algorithms, including AES,
offering flexibility in

implementation.

c) Lightweight and efficient:
Enc is optimized for

performance, making it

suitable for resource-
constrained applications.

d) Open-source: Its open-

source nature encourages
active community

involvement and

enhancements.

a) User-friendly design:
LockMe features an

intuitive graphical user

interface (GUI) with drag-
and-drop functionality,

making it accessible to

users with varying
technical expertise.

b) Comprehensive

encryption: LockMe
utilizes AES-256

encryption and provides

secure key management
for generating, saving, and

retrieving keys.

c) Cross-platform
compatibility: LockMe

runs seamlessly on both

Windows and Linux
operating systems, catering

to a wide range of users.

d) Offline functionality: The
application processes all

encryption and decryption

locally without reliance on
cloud services, ensuring
user privacy.

Weaknesses
a) Limited features: Hat.sh

focuses solely on file

encryption and decryption,
lacking advanced

functionalities like key

management or cloud
integration.

b) Reliance on a browser: As

a web-based tool, it
requires a browser to

operate, which may limit

usability in offline
scenarios or highly

restrictive environments.

c) No dedicated support for
developers: Unlike library-

focused solutions, Hat.sh

does not provide tools for
integration into larger

systems or applications.

a) Requires programming

expertise: Enc is not a

standalone tool and
demands programming

knowledge to integrate

effectively, making it
inaccessible for non-

technical users.

b) Absence of a user
interface: Enc lacks a GUI,

which may hinder its

usability for end-users
unfamiliar with command-

line or API-based

operations.
c) Limited out-of-the-box

functionality: Enc is not

designed as a
comprehensive application

and serves only as a library

component.

a) No cloud integration:

LockMe does not support

cloud-based services,
which may limit its appeal

to users requiring

synchronized backups or
multi-device access.

b) Limited scope: LockMe

focuses solely on local file
encryption and decryption

without enterprise-level

functionalities.
c) Dependency on user

knowledge for key

management: While
LockMe simplifies key

handling, users still need to

securely manage their keys
to prevent data loss or
unauthorized access.

71

2.7 Summary of Findings

2.7.1 Synthesis of Literature

The literature review underscores the critical and escalating importance

of data security within the contemporary digital environment. The rapid

proliferation of data collection, storage, and transmission has unfortunately

been accompanied by a significant increase in the frequency, sophistication,

and impact of cybersecurity risks, including hacking, malware, ransomware

attacks, and data breaches (Kshetri, 2013). These challenges highlight an

undeniable and urgent need for strong, reliable, and accessible encryption

techniques to safeguard confidential and sensitive data. For ensuring data

security, maintaining secrecy (confidentiality), and guaranteeing integrity,

cryptography—and more specifically, the processes of encryption and

decryption—is absolutely essential (Kohno et al., 2010).

Current research and existing technologies demonstrate a wide array of

encryption methods, including well-established algorithms like AES, RSA, and

Blowfish, each possessing unique advantages, disadvantages, and optimal use

cases (Menezes et al., 1996). The landscape of available encryption solutions

is illustrated by programs such as VeraCrypt, which offers powerful full-disk

and volume encryption, and AxCrypt, which emphasizes user-friendly design

for file-level protection, alongside command-line tools like GnuPG that offer

flexibility for technical users. However, the review also clearly identifies

persistent issues related to usability, particularly for non-technical users, and

accessibility challenges, especially concerning cross-platform compatibility

and intuitive key management (Das et al., 2020). These discrepancies and

unresolved issues highlight the pressing necessity for a product like LockMe,

72

which aims to unite robust, industry-standard encryption procedures with an

intuitive, user-centred design, thereby making strong security more attainable

for a broader audience.

2.7.2 Research Gap

The comprehensive literature review identifies several significant gaps

in existing file encryption tools, which collectively motivate the development

of the project as an innovative and needed solution. The primary research gaps

that this project aims to address include:

i. Accessibility and Usability for Non-Technical Users

The intricate workflows, complex interfaces, and jargon-laden

documentation of many existing encryption technologies can significantly

discourage non-technical individuals from adopting and correctly using

secure practices.

For everyday users such as individuals, freelancers, or employees

in small businesses, those who might need encryption for personal data,

client confidentiality, or small-scale company use, this inaccessibility poses

a substantial challenge and a security risk. There is a clear need for tools

that abstract cryptographic complexity behind intuitive UIs (Norman,

2013).

ii. Simplified and Secure Key Management Challenges

Effective and secure key management is fundamental to proper

encryption and overall data security. However, current solutions frequently

73

burden users with the complex tasks of generating, saving, retrieving, and

backing up keys, which dramatically increases the possibility of human

error (e.g., lost keys, weak key choices, insecure storage) and thereby

jeopardizes data security (Blaze, n.d.). User-friendly key management

systems that streamline these procedures, provide clear guidance, and

integrate secure storage options are conspicuously needed but often lacking

in tools aimed at general users.

iii. Consistent Cross-Platform Compatibility and Performance

The ability of many existing solutions, such as AxCrypt

(historically limited Linux support) and even some aspects of VeraCrypt

(complexity can be a barrier regardless of platform), to seamlessly handle

numerous operating systems (specifically Windows and Linux for

LockMe's scope) is often limited or comes with caveats. For instance,

VeraCrypt's powerful features might be offset by its complicated interface,

making it difficult to use effectively even if it is cross-platform, while tools

like AxCrypt may not fully support all desired operating systems or may

have performance variations. For an encryption tool to be genuinely

effective and broadly adopted, it must be able to accommodate people

working in diverse computing environments without compromising

performance or usability.

iv. The Digital Divide and Security Literacy

A broader societal gap exists concerning digital literacy and

cybersecurity awareness (Society, 2021). Many individuals lack a

74

fundamental understanding of online threats and the importance of

protective measures like encryption. While LockMe cannot solve this

alone, tools designed with extreme ease of use can help lower the barrier to

adopting better security practices, indirectly contributing to bridging this

gap for its users.

By systematically addressing these research gaps, LockMe hopes to

offer a secure, user-friendly, and accessible encryption system. This system

will empower users with varying degrees of technological proficiency to

effectively safeguard their confidential information. The development of this

novel application is predicated on the synthesis of insights from existing

literature, an understanding of current tool limitations, and the identification of

these pressing research needs

2.8 Chapter Summary

2.8.1 Justification for the Project

The increasing and undeniable need for safe, effective, and readily

accessible methods to safeguard confidential information in a society that is

becoming ever more digitally interconnected and vulnerable justifies this

endeavour. Protecting important data is more critical than ever before, as cyber

dangers—including sophisticated ransomware attacks, unauthorized illegal

access, persistent data breaches, and identity theft—are constantly changing

and growing in scale (Jurgens & Dal Cin, 2025).

The usability requirements of non-technical users, as well as those

working in diverse, multi-platform environments, are frequently not adequately

met by current encryption technologies, notwithstanding their theoretical

75

effectiveness in terms of security strength. This significant disparity presents a

substantial opportunity for a product like LockMe to reach and empower a

broader demographic of users by focusing on proactive rather than reactive

security measures (Schneier, 2015).

1. Addressing Usability Challenges in Existing Solutions

Many of the encryption solutions available today were created with

experienced users in mind and require technical knowledge to function

properly. Wider use of these products is hampered by complicated

procedures, unintuitive interfaces, and a dearth of useful feedback systems.

Some solutions, for example, make the encryption process unduly difficult

by lacking features like drag-and-drop file selection, real-time feedback,

and progress indicators. By including an intuitive graphical user interface

(GUI) that makes encryption and decryption chores easier, LockMe directly

addresses these issues and enables users of all technical skill levels to

effectively safeguard their files.

2. Providing Cross-Platform Compatibility

Modern users frequently transition between operating systems like

Windows and Linux while working in multi-platform environments.

Unfortunately, a lot of the encryption solutions that are now available are

platform-specific, which limits their usefulness and causes difficulty. By

providing smooth cross-platform interoperability, LockMe aims to close

this gap and guarantee that customers may encrypt and decrypt files on any

operating system. Individual users, small enterprises, and IT professionals

76

who need dependable encryption technologies in diverse situations are

catered to by this flexibility.

3. Enhancing Accessibility to Advanced Encryption Techniques

Although algorithms such as AES (Advanced Encryption Standard)

are widely acknowledged for their resilience and effectiveness, they are

frequently integrated into instruments that necessitate an elevated level of

technical proficiency to operate. For non-technical people who may gain

the most from encryption tools, this puts up a hurdle. By incorporating AES

into a user-friendly interface, LockMe democratises access to robust

encryption techniques, allowing users to safeguard critical information

without having to be familiar with the technical nuances of encryption.

4. Fulfilling the Need for Local File Encryption

Users are becoming more cautious of cloud-based encryption

solutions that can reveal confidential information to outside parties due to

increased worries about data privacy. By emphasising local file encryption

and making sure that all encryption and decryption take place on the user's

device, LockMe allays this worry. Because of its architecture, which puts

user control and privacy first, LockMe is a desirable option for people and

businesses looking for safe offline data security.

5. Supporting Common File Formats

By supporting a large number of popular file formats, such as

documents, photos, and compressed files, LockMe guarantees adaptability.

Its usefulness is increased by this function, which enables users to encrypt

77

and decode a variety of sensitive data for usage in business, the workplace,

or personal settings. LockMe's development is further justified by the fact

that it supports a variety of use cases by providing compatibility with

numerous file formats.

6. Promoting Cybersecurity Awareness

LockMe's contribution to raising awareness of cybersecurity is yet

another important defence. The project promotes safe data management

practices by offering an easily navigable encryption tool. Adopting

products like LockMe will help decrease vulnerabilities linked to

unprotected sensitive information, which will contribute to a more secure

digital ecosystem as cybersecurity dangers continue to rise.

7. Targeting Small Businesses and Non-Technical Users

Developers of encryption software frequently ignore small

enterprises and non-technical customers, leaving them open to

cyberattacks. By offering a cost-effective, user-friendly encryption solution

that is customised to meet customer needs, LockMe seeks to close this gap.

LockMe is a cost-effective substitute that provides strong protection

without needless complexity, in contrast to enterprise-grade systems that

could be excessively complicated or costly.

8. Supporting Key Management and Operational Security

Secure key management is necessary for effective encryption.

Nevertheless, a lot of current programs either ignore this feature or use it in

a way that makes sense to consumers. Users may handle their encryption

78

keys with confidence and safety because to LockMe's secure key

generation, storage, and retrieval features. The project's necessity is further

supported by its emphasis on operational security.

9. Limiting Scope to Practical Features

Secure key management is necessary for effective encryption.

Nevertheless, a lot of current programs either ignore this feature or use it in

a way that makes sense to consumers. Users may handle their encryption

keys with confidence and safety because to LockMe's secure key

generation, storage, and retrieval features. The project's necessity is further

supported by its emphasis on operational security.

10. Filling Research Gaps in the Field

The literature review identified several shortcomings in the state of

encryption technologies today, such as platform reliance, usability issues,

and restricted access to strong encryption methods. By offering a solution

that is both user-specific and compliant with industry standards, LockMe

immediately fills these gaps. This initiative advances the field of secure file

management by addressing these shortcomings.

In conclusion, this project represents an important and urgent

endeavour that tackles critical, real-world issues in safe file encryption and

decryption. LockMe's strategic emphasis on user accessibility, seamless cross-

platform interoperability, and robust, industry-standard security (AES-256) has

the potential to make a substantial positive impact on how individuals and

small organisations safeguard their confidential digital data. The project's core

79

focus on privacy, dependability, and simplicity ensures that it can effectively

meet the demands of its intended audience while also supporting the more

general and vital objective of raising awareness and adoption of cybersecurity

best practices in an increasingly dangerous digital landscape.

2.8.2 Connection to Project Goals

This chapter establishes the foundational knowledge essential for

guiding the development of the "LockMe: Secure File Encryption and

Decryption Desktop Application" by achieving the following objectives:

1. Defining Key Concepts and Terminology Related to Cryptography and

Data Security

Important words and ideas, including encryption, decryption,

symmetric-key algorithms, and asymmetric-key algorithms, are thoroughly

explained in this chapter. This fundamental knowledge is essential for

creating a reliable application that complies with accepted cryptography

rules. By laying out these ideas, the project conforms to industry norms and

guarantees the safe and efficient deployment of encryption techniques. The

choice of algorithms like AES, which will form the foundation of the

application's encryption and decryption procedures, is directly influenced

by this understanding.

80

2. Reviewing Existing Solutions and Identifying Gaps in the Current

Landscape

A thorough analysis of current encryption programs, such as

VeraCrypt and AxCrypt, identifies both their advantages and

disadvantages. For instance, VeraCrypt excels at offering sophisticated

encryption features, but its complexity and emphasis on volume-level

encryption rather than individual files limit its usefulness. In contrast,

AxCrypt lacks Linux support and strong free-tier features but offers

simplicity and cloud integration. The chapter highlights the necessity for an

easily accessible, cross-platform solution like LockMe, which fills these

gaps with an emphasis on file-level encryption, intuitive design, and

smooth multi-OS compatibility, by pointing out these constraints.

3. Exploring Relevant Algorithms and Methodologies for Implementation

The technical foundation for LockMe is established by the

investigation of algorithms like AES and RSA as well as techniques like

hybrid encryption systems. Because it strikes the right balance between

security and performance, AES is the best option for encrypting files in real

time. The chapter also looks at important key management techniques,

making sure the program has safe and user-friendly ways to generate, store,

and retrieve encryption keys. These realisations are essential to fulfilling

the project's objective of providing a safe and effective encryption system.

81

4. Analysing the State of the Art and Future Trends in the Field

Through an analysis of developments like lightweight

cryptography, homomorphic encryption, and post-quantum cryptography,

the chapter links LockMe's growth to the larger framework of changing

cybersecurity procedures. Even though the project's main goal is to

implement well-known standards like AES, LockMe's design is made to be

flexible and scalable thanks to an awareness of emerging trends. The

application can stay safe and relevant in the face of new dangers and

technical developments because of this forward-looking viewpoint.

The general objectives of the LockMe project are directly in line

with the knowledge acquired from this chapter. Understanding

cryptographic concepts, along with current solutions and new

developments, offers a strong basis for creating a desktop application that

is:

i. Secure: By leveraging industry-standard encryption algorithms and best

practices in key management, LockMe ensures robust protection for

sensitive files.

ii. Efficient: Real-time encryption and decryption performance is

improved, and resource consumption is reduced through the use of AES

encryption and optimised procedures.

iii. User-Friendly: A focus on intuitive design, drag-and-drop functionality,

and clear feedback mechanisms ensures accessibility for users with

varying levels of technical expertise.

82

This integration of theoretical understanding with real-world

application guarantees that LockMe will successfully close the gaps in existing

encryption technologies and accomplish its goal of offering a complete

solution for protecting sensitive data.

83

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

This chapter explores the thorough research methodology and techniques

used to look into the creation of the "LockMe: Secure File Encryption and

Decryption Desktop Application," a program intended to improve data security

with strong encryption and intuitive features. It acts as a thorough manual for the

complete research process, detailing the frameworks, techniques, and tactics

applied to accurate and thorough data collecting and analysis. A well-structured

study is necessary to guarantee the validity and dependability of research findings.

The chosen research methodology and how they fit with the main aims and

objectives of this study are explained in the first section of this chapter. The

project's goals inform the methodological choice, showing how several approaches

offer insightful information on the creation, use, and importance of the LockMe

program. The goal is to provide an encryption tool that is safe, effective, and usable

by people with varying degrees of technical proficiency.

The methods used to gather pertinent data are also covered in detail in this

chapter, including particular approaches like surveys, user feedback sessions, and

prototype evaluations. Every technique is described in detail to make clear how it

contributes to the overall project goals. This study makes sure that the research

findings are closely related to the theoretical and practical foundations of data

encryption and application design by looking at user needs, technological

specifications, and current solutions.

This chapter also offers a thorough summary of the research design, and

the methodical techniques used to assess and improve the LockMe application. It

84

guarantees that the research is carried out with ethical responsibility and scientific

rigour with the goal of generating accurate and remarkable results. In the end, the

study approach advances safe data management techniques, which is consistent

with the more general objectives of enhancing cybersecurity and developing easily

available encryption solutions.

3.2 Software Development Methodology

3.2.1 Chosen Methodology and Justification

The choice to implement the ADDIE model for the project is a strategic

decision tailored to the specific needs and goals of the project. ADDIE stands

out as a suitable approach due to its structured, systematic, and iterative

framework, ensuring comprehensive development from conception to

evaluation. This methodology aligns perfectly with the project's requirements,

which demand a robust framework capable of meticulous planning, controlled

execution, and thorough assessment to deliver a secure and user-friendly

application.

The structured phases of ADDIE (Analysis, Design, Development,

Implementation, and Evaluation) enable the project team to systematically

address the complexities involved in creating an encryption application that is

both safe and easy to use. In the Analysis phase, a deep understanding of user

needs, existing encryption tool shortcomings (like lack of cross-platform

compatibility and usability issues), and technical requirements for robust

security (e.g., AES encryption) is established. The Design phase then

meticulously plans the application's architecture, user interface, and functional

specifications, ensuring that key features like drag-and-drop functionality and

85

reliable key management are prioritized from the outset.

During Development, the planned features are built with continuous

internal testing. The Implementation phase focuses on deploying the

application and making it accessible to users across Windows and Linux.

Finally, the Evaluation phase allows for continuous feedback and assessment,

ensuring the final product meets its objectives of user-friendliness, security,

and cross-platform compatibility. This systematic, feedback-driven approach

helps to ensure the final product satisfies the needs of its target audience, which

includes individuals, small businesses, and professionals from a variety of

industries.

The sequential yet iterative nature of ADDIE promotes thorough

documentation and quality control at each stage, which is crucial for a security-

focused application like LockMe. This disciplined approach facilitates clear

communication among team members with different specialities, including

user interface design, software engineering, and cryptography. By progressing

through distinct phases, ADDIE ensures that potential problems are identified

and addressed early, leading to the effective development of a safe and intuitive

encryption solution that consistently meets user expectations and project goals.

86

3.2.2 Step-by-step Explanation of Activities Done in Each Phase of the

Chosen Methodology

Figure 3.0.1 Phases of the ADDIE model

1. Analyse Phase

The Analyse phase begins with identifying and understanding the

specific needs and challenges faced by target users, including individuals and

small business owners concerned about data privacy and file security. During

this phase, the project team gathered requirements by studying existing

encryption tools and collecting feedback from stakeholders to clarify essential

features such as AES-256 encryption, user-friendly interfaces, and cross-

platform compatibility. The problem statement was refined, and clear

objectives were established to guide the project. This phase ensured that

development efforts would directly address real-world user needs and security

expectations.

87

2. Design Phase

In the Design phase, the team created detailed plans and blueprints for

both the system’s technical architecture and its user interface. Wireframes and

prototypes were developed to visualize the user experience, focusing on

intuitive features like drag-and-drop file selection and progress indicators to

enhance usability. Concurrently, the technical framework was planned,

selecting Next.js for frontend development, integrating AES-256 encryption

mechanisms, and deciding on secure key management strategies. The design

stage also included defining module interactions, data flow, and security

protocols, ensuring a solid foundation for development.

3. Develop Phase

During the Develop phase, the team translated the design specifications

into functional code. The Next.js framework was used to build responsive user

interface components, while WebAssembly modules wrapped cryptographic

functions to deliver hardware-accelerated AES-256 encryption and decryption.

The development process focused on creating modular, maintainable code,

integrating frontend components with cryptographic backends, and

implementing error handling and progress reporting. Regular code reviews and

unit testing were conducted to ensure quality and functionality. This phase

emphasized building a stable and secure application aligned with the design

goals.

88

4. Implement Phase

The Implement phase involved deploying LockMe on target platforms

(Windows and Linux) and conducting real-world user testing. The team

packaged the application using Electron, enabling seamless desktop

installation and execution. Users were invited to perform typical encryption

and decryption tasks, allowing the team to observe usability and identify any

operational issues. This phase ensured that the application was not only

functional in a controlled environment but also effective and reliable under

actual user conditions. Feedback collected during implementation informed

refinements and bug fixes.

5. Evaluate Phase

In this phase, comprehensive testing and assessment were performed to

validate LockMe’s performance, security, and usability. Functional testing

confirmed that encryption and decryption operated correctly across various file

types and sizes. Performance benchmarks measured processing times, CPU

and memory usage, confirming efficient hardware utilization. Security

evaluations included static code analysis and penetration testing to identify

vulnerabilities and verify cryptographic integrity. Usability was assessed

through structured surveys using the System Usability Scale (SUS), with

feedback indicating high user satisfaction and ease of use. This phase

concluded with documentation of results and recommendations for future

improvements, closing the ADDIE cycle and supporting continuous

enhancement.

89

3.3 Research Methodology

3.3.1 Chosen Research Methodology and Justification

For this project, quantitative research is the primary method for

gathering data on user preferences, behaviours and expectations. This approach

enabled the collection of structured, measurable insights from a broad

demography, ensuring that findings were both comprehensive and objective.

Surveys were distributed via Google Forms to individuals, small-

business owners, and IT professionals. The questionnaire covered topics such

as encryption frequency, preferred file types, and respondents’ technical

proficiency. Specific items asked the participants to rate the importance of

features like AES encryption, cross-platform compatibility, drag-and-drop

functionality and real-time progress indicators, as well as their satisfaction with

existing tools currently and to give suggestions for improvement.

All survey responses were analysed to identify key trends, such as the

most requested features, common technical difficulties and the overall demand

for a more user-friendly encryption solution. These results guided the

prioritisation of features in LockMe, helping to ensure that the application

directly addresses the needs highlighted by potential users.

By relying solely on quantitative survey data, the development of

LockMe remains firmly data-driven, resulting in a secure, intuitive and

practical encryption tool tailored to its target audience.

90

3.3.2 Questionnaire Design and Samples

Figure 3.0.2 Survey form display

Figure 3.0.3 Survey: Question 1

91

Figure 3.0.4 Survey: Question 2

Figure 3.0.5 Survey: Question 3

Figure 3.0.6 Survey: Question 4

92

Figure 3.0.7 Survey: Question 5

Figure 3.0.8 Survey: Question 6

Figure 3.0.9 Survey: Question 7

93

Figure 3.0.10 Survey: Question 8

Figure 3.0.11 Survey: Question 9

Figure 3.0.12 Survey: Question 10

94

Figure 3.0.13 Survey: Question 11

Figure 3.0.14 Survey: Question 12

Figure 3.0.15 Survey: Question 13

95

Figure 3.0.16 Survey: Question 14

Figure 3.0.17 Survey: Question 15

3.3.3 Analysis of Questionnaire Data

Figure 3.0.18 Analysis of respondent’s age distribution

Participants were asked about their age group in the question.

According to the chart, of the twenty respondents, 90% (18 respondents) were

between the ages of 18 and 24. Smaller percentages of respondents were in

other age groups. This implies that young adults, most likely students, or people

just starting their professional careers, make up the majority of responders. This

age group's dominance indicates that the audience is tech-savvy and may be

somewhat familiar with encryption tools, which makes them a perfect target

96

for the introduction of user-friendly encryption applications.

Figure 3.0.19 Analysis of respondent’s gender distribution

Participants were asked about their gender identity in the question. 10%

(10 respondents) of the 20 respondents identified as male, 35% (7 respondents)

as female, and the remaining 15% (3 respondents) as non-binary or as

preferring not to specify their gender, according to the chart. This suggests a

somewhat male majority among a comparatively diverse group of respondents.

Given this diversity, it is recommended that the application be created with

inclusivity in mind, making sure that all users, regardless of gender, can utilise

its features.

Figure 3.0.20 Analysis of respondent’s occupation

97

Participants were asked about their main line of work. The graph shows

that 16 respondents, or 80% of the sample, were students, and 2 respondents,

or 10% of the sample, were full-time or part-time employees. This indicates

that the vast majority of respondents are probably still in school, which could

have an impact on their degree of technical proficiency and the kinds of

encryption tools they are accustomed to. Given that students may not have

much experience with sophisticated or complicated software, a straightforward

and user-friendly encryption tool would be more appealing to this group.

Figure 3.0.21 Analysis of respondents’ technical expertise

Participants were asked to score their degree of technical proficiency.

Just 5% (1 respondent) identified as advanced users, 50% (10 respondents) as

intermediate users, and 45% (9 respondents) as beginners, according to the

chart. This suggests that very few respondents are highly skilled, with the

majority having a moderate to basic level of technical expertise. According to

these results, the target audience would be most affected by a file encryption

tool designed for novice and intermediate users, complete with easy-to-follow

instructions and an intuitive user interface.

98

Figure 3.0.22 Analysis of respondents’ usage of operating systems (OS)

Participants were asked which operating system they use most

frequently. 95% (19 respondents) use Windows, 20% (4 respondents) use

Linux, and only 5% (1 respondent each) use MacOS and iPad, according to the

chart. This overwhelming preference for Windows implies that compatibility

with this platform should be given top priority during the encryption tool's

development. The noteworthy application of Linux, however, points to a

chance to support developers or more experienced users who might favour

open-source solutions.

Figure 3.0.23 Analysis of respondents’ usage of any file encryption tools or methods

Participants were asked if they currently use any tools or techniques for

file encryption. According to the chart, 70% of respondents (14 respondents)

99

selected "Yes," whereas 30% (6 respondents) selected "No." This implies that

most respondents are aware of file encryption and use it to some degree. The

sizeable minority of people who do not use encryption tools, however, suggests

that more people need to be taught about the advantages of file encryption,

especially in terms of protecting sensitive data.

Figure 3.0.24 Analysis of respondents' encryption tool preferences

Participants were asked, if applicable, which file encryption programs

they use. WinRAR is the most widely used tool, according to the chart, with

62.5% of respondents (10 users), followed by 7-Zip (43.8%) and VeraCrypt

(37.5%). 18.8% (3 respondents) said they use BitLocker, whereas 6.3% (1

respondent) said they are not sure which tools they use. This suggests that for

simple encryption tasks, users favour well-known, accessible tools.

Nonetheless, there might be a lack of knowledge or uptake of more powerful

encryption programs like VeraCrypt, which presents a chance to encourage

more stringent security procedures.

100

Figure 3.0.25 Analysis of respondents' reasons for using or not using encryption tools

Participants were asked why they chose to use or not use file encryption.

According to the graph, 70% of respondents (14 respondents) use encryption

to safeguard sensitive data, while 40% (8 respondents) do so for regulatory

compliance or data backup. However, 5% (1 respondent each) felt that

encryption was too time-consuming or that they were not familiar with its use,

while 20% (4 respondents) pointed to complexity as a barrier. These answers

underscore the importance of streamlining the encryption process to promote

broader adoption among reluctant users, while also highlighting the dual

motivations of security and compliance for encryption users.

Figure 3.0.26 Analysis of respondents’ challenges when using encryption tools

101

Participants were questioned regarding the difficulties they encounter

when utilising file encryption software. According to the chart, software

complexity was mentioned as a major problem by 75% (15 respondents),

followed by slow performance (50%, 10 respondents), a lack of user-friendly

interfaces (60%, 12 respondents), and trouble managing keys (45%, 9

respondents). In order to serve a wider audience, this data emphasises the need

for a tool that strikes a balance between strong encryption and usability,

tackling both technical and usability issues.

Figure 3.0.27 Analysis of respondents perceived need for a user-friendly tool

Participants were asked how strongly they believed that a user-friendly

file encryption tool was necessary. 70% (14 respondents) gave the need a "5"

rating (strongly agree), while 25% (5 respondents) gave it a "4" rating,

according to the chart. This resounding consensus shows how much demand

there is for an easily navigable encryption tool that minimises complexity while

guaranteeing efficient user data protection. According to the survey results,

creating such a tool is exactly in line with user expectations and market

demand.

102

Figure 3.0.28 Analysis of respondents desired features in an encryption tool

Participants were asked what characteristics they would like to see in a

file encryption tool. According to the chart, 65% (13 respondents) favoured

password protection, while 95% (19 respondents) valued an intuitive user

interface. Strong encryption algorithms were chosen by 50% (10 respondents)

and cross-platform compatibility by 55% (11 respondents). Just 20% (4

respondents each) said they were interested in automatic key management and

cloud storage integration. These findings indicate that users' top priorities are

robust security features and ease of use, indicating a focus on core

functionalities and simplicity. Another important consideration is cross-

platform compatibility, which highlights the necessity of making sure the tool

works with various operating systems.

103

Figure 3.0.29 Analysis of respondents' importance of security, ease of use, and cross-platform

compatibility

Participants were asked to rank the significance of elements like cross-

platform compatibility, security, and ease of use. 80% (16 respondents) gave

these factors a "5" rating (very important), according to the chart, while 10%

(2 respondents each) gave them a "4" or "3." Not a single respondent thought

these factors were less significant. This broad agreement highlights how

important these characteristics are in influencing users' decisions and implies

that, in order to satisfy user expectations and guarantee widespread adoption,

they should be given top priority during the development process.

Figure 3.0.30 Analysis of respondents' willingness to try a new encryption tool

104

Participants were asked if they would be open to trying a new file

encryption program that has a lot of advantages. 90% (18 respondents) said

"Yes," according to the chart, while 10% (2 respondents) said "Maybe." The

idea was not categorically rejected by any of the participants. This suggests an

ardent desire to investigate new tools, so long as they provide observable

benefits over current solutions, like improved usability, enhanced security, or

unique features.

Figure 3.0.31 Analysis of respondents' concerns and requirements regarding file encryption

Participants were questioned open-endedly about any particular needs

or worries they had about file encryption. The necessity of data privacy, app

security, and an intuitive user interface to make complicated encryption tasks

easier were common themes. While some respondents expressed concern about

encryption tools being restricted by paywalls, others cited speed and

accessibility as crucial factors. These answers emphasise the necessity of

developing a simple, low-cost tool that offers users robust security and privacy

105

without needless obstacles or complications.

Figure 3.0.32 Analysis of respondents' suggested features and improvements for LockMe

Participants were asked for ideas on how to make the "LockMe" tool

better. A number of respondents emphasised the significance of an interface

that is both visually appealing and easy to use; some suggested using "friendly

colours" and a "smooth UI." Additional recommendations included making the

tool cross-platform, improving security for encrypted files, and including batch

encryption and decryption features. According to these responses, there is a

high need for a tool that satisfies more complex requirements like managing

several files at once while striking a balance between usefulness and aesthetics.

106

3.4 Proposed System Design

Table 0.1 Requirements of the proposed system

No. Requirement Description Type (Functional /

Non-functional /

Usability)

Stakeholder

1 The application should allow users to encrypt

and decrypt files directly through an intuitive

graphical user interface (GUI).

Functional End-users (all)

2 The system must support AES-256 encryption

as the primary encryption standard to ensure

robust security for all files.

Functional End-users (all)

3 Users should be able to manage their encryption

keys securely within the application, including

generating, saving, and retrieving keys.

Functional End-users (all)

4 The application should be cross-platform, fully

functional on both Windows and Linux

operating systems.

Non-functional End-users (all)

5 The system must process encryption and

decryption tasks in a reasonable amount of time

to ensure efficiency for large file sizes.

Non-functional End-users (all)

6 The user interface should be designed for

simplicity and clarity, with features like drag-

and-drop functionality and real-time feedback

during file operations.

Usability Non-technical

users

7 Error messages must be clear and descriptive,

helping users understand and resolve any issues

that occur during encryption or decryption.

Usability Non-technical

users

8 The system should provide support for common

file types such as documents, images, and

compressed archives to ensure versatility.

Functional End-users (all)

9 The application must include a feature for

verifying file integrity to ensure the data

remains unchanged after encryption and

decryption.

Functional Advanced

users/IT staff

10 Navigation within the application should be

clear and well-organized, enabling users to

quickly locate encryption, decryption, and key

management functionalities.

Usability Non-technical

users

107

3.4.1 UML Modelling of the Proposed System

Use Case Diagram

Figure 3.0.33 Use Case Diagram

The diagram places a single actor, the User, on the left and lists eight

use-cases on the right. Starting at the top, the user can choose Encrypt File to

secure a file with AES-256-GCM or Decrypt File to restore a previously

encrypted file. The next option, Manage Snippets, lets the user add, edit, and

delete stored code snippets. Two AI features follow: Generate Passphrase

produces a strong random passphrase, while Analyse Passphrase Strength

evaluates an existing passphrase and provides feedback. The user can also

View Dashboard for an overview of recent activity, Manage Account to update

profile details or change the password, and Customise Settings to adjust

preferences such as theme, language, or default encryption behaviour. Each

arrow from the User to a use-case shows that the action is started directly by

108

the user in the LockMe interface.

Package Diagram

Figure 3.0.34 Package Diagram

Each folder represents a top-level package in LockMe. App (UI &

Routing) contains the Next.js layouts and page files and imports reusable

components, shared hooks, and generic utils. The hooks layer acts as a bridge

between the UI and lower-level services, “accessing” the cryptography engine,

Firebase storage wrappers, and the Genkit/Gemini AI client while also re-using

helper utilities. Core service packages, such as crypto, storage, and ai depend

only on utils, keeping them UI-agnostic and easy to unit-test. By showing these

compile-time links, the diagram highlights a modular structure in which the

user interface is cleanly separated from encryption logic, persistent storage, and

AI features.

109

Class Diagram

Figure 3.0.35 Class Diagram

LockMe is the orchestration hub, holding references to every major

service. UserSession authenticates through FirebaseService and exposes

login/logout status. The GUI funnels actions through DashboardController,

which delegates file-level tasks to EncryptController and DecryptController.

Both controllers rely on FileManager for disk I/O and CryptoEngine for AES-

256-GCM operations that produce or consume LockmePackage objects.

SnippetManager stores code fragments in Firestore via the same

FirebaseService, while AIClient sends passphrases or prompts to Gemini

(through Genkit) and personalises advice for the logged-in user. This separation

keeps encryption logic, storage, AI features, and UI flow loosely coupled yet

clearly mapped, making the system easier to test, maintain, and extend.

110

Sequence Diagram

Figure 3.0.36 Sequence Diagram

The sequence begins with the Login phase: the user submits credentials

to the React interface, which forwards them to Firebase Auth; a successful

token returns the user to the dashboard. For encryption, the user drags a file

into the app, the UI reads it from the local file system, prompts for a passphrase,

and calls the Web Crypto API to derive an AES-256-GCM key and encrypt the

bytes. The resulting ciphertext, IV, and tag are written back as a .lockme file,

and the user receives instant feedback. The decryption path mirrors these steps

in reverse, with an authentication-tag check that determines a success or error

111

message. When the user invokes the AI security toolkit (for example, to gauge

passphrase strength), the UI sends the request through Genkit to Google

Gemini and displays the returned score. Finally, the snippet manager allows

users to store or retrieve code fragments via Firestore, confirming writes before

returning control to the user. Each interaction shows how LockMe’s

components, which are the UI, local storage, browser cryptography, Firebase

services, and external AI co-operate to deliver seamless, client-side file

security.

State Machine Diagram

Figure 3.0.37 State Machine Diagram

112

The state diagram shows LockMe’s life-cycle in plain steps:

1. Launch & Login: The app opens in the Not Logged In state. When the user

submits credentials, it moves to Authenticating; success leads to the

Dashboard, failure returns to the start.

2. Idle Home (Dashboard): From the dashboard the user can choose one of

four tasks: Encrypt, Decrypt, open the AI Toolkit, or manage Snippets.

Quitting exits the app.

3. Encrypt / Decrypt: Each task follows the same pattern: pick a file, enter a

passphrase, run the cryptographic process, then show either Success or

Error before returning to the dashboard.

4. AI Toolkit: The user enters a prompt; the app calls Gemini. When a

response (or error) arrives, control jumps back to the dashboard.

5. Snippet Manager: Reads or writes to Firestore, then also returns to the

dashboard.

At every turn the application always funnels the user back to the

dashboard, keeping the workflow simple and consistent.

113

Activity Diagram

Figure 3.0.38 Activity Diagram

The activity diagram outlines LockMe’s main user paths. When the app

launches, the user first passes a login / registration gate. A valid session opens

the dashboard, where four actions are available:

114

• Encrypt – the user picks a file, enters a passphrase, and the browser

generates an AES-256 key and IV, encrypts the file with AES-GCM, and

saves the resulting .lockme package.

• Decrypt – the user selects a .lockme file, supplies the passphrase, and the

client verifies the authentication tag before recovering and saving the

original file.

• AI Toolkit – a request is routed through Genkit to Google Gemini; the

returned advice (e.g., passphrase strength or recovery prompt) is shown to

the user.

• Snippet Manager – the user adds, searches, or retrieves code snippets, with

all reads and writes handled in Firestore.

Each branch ends with a unified feedback step that shows success or

error messages, then returns the user to the dashboard until they choose to exit.

All cryptographic work and AI calls occur client-side, so no sensitive data leave

the device.

3.4.2 Hardware Design and Block Diagram

This section describes the system architecture and hardware needed to

support the project. As a stand-alone desktop program, the application needs a

stable but accessible hardware environment to function at its best. Targeting

users with various levels of technical proficiency, this design places an

emphasis on compatibility with widely available desktop and laptop systems.

115

Hardware Requirements

Table 0.2 Hardware requirements for the proposed system

Category Specifications

Processor (CPU) Minimum: Intel Core i3 or AMD equivalent.

Recommended: Intel Core i5 or higher for faster encryption/decryption processing.

Memory (RAM) Minimum: 4GB to handle small to medium-sized files.

Recommended: 8GB or higher for processing large files efficiently.

Storage Minimum: 128MB for application installation.

Recommended: Additional space for saving encrypted/decrypted files, depending on user’s

needs.

Operating System Supported Platforms:

- Windows: Windows 10 and Windows 11.

- Linux: Major distributions such as Ubuntu, Mint, or Debian.

Graphics (GPU) Not required, but a dedicated GPU can accelerate encryption for large files in certain

scenarios.

Peripheral Devices • USB Drives: For saving encryption keys externally for added security.

• External Hard Drives: For managing large files or bulk tasks.

• Secure Key Storage Devices: Optional modules for additional key security.

System Interaction with the Hardware

The LockMe application interacts with the user’s hardware components

are as follows:

• Processor (CPU): Performs computationally intensive tasks such as

encryption and decryption using algorithms like AES-256.

• Memory (RAM): Temporarily loads files for encryption/decryption,

ensuring fast processing without overloading the system.

• Storage: Serves as the location for application installation,

encrypted/decrypted file storage, and key management.

• Peripheral Devices: Allows external storage and key management,

enhancing security and usability.

116

Block Diagram

Figure 3.0.39 Block Diagram

The block diagram groups LockMe into four areas. On the client device

the user interacts with the UI, which directs requests to three local modules:

the crypto engine handles file encryption and decryption, reading ordinary files

and writing encrypted “.lockme” versions; the snippet manager stores and

retrieves code fragments via Firestore; and the AI client sends passphrase-

related queries to the Gemini model. Firebase cloud services supply

authentication, the Firestore database, and Cloud Storage for profile images,

while Gemini runs as an external AI service. Arrows show how data and

requests flow between the user, local processing, cloud persistence, and

external AI, highlighting clear separation of responsibilities within the system.

3.5 Chapter Summary

This chapter provides an overview of the thorough research process used

to create the "LockMe: Secure File Encryption and Decryption Desktop

Application." It starts by outlining the justification for choosing the Agile

117

development methodology, highlighting its adaptability, iterative process, and

user-centred methodology. Agile was selected to support changing needs and

guarantee ongoing integration of user feedback, allowing for the creation of crucial

features like secure key management, AES-256 encryption, and an intuitive user

interface. This process enables gradual advancement, enabling ongoing

improvement and the provision of features in line with user requirements.

The chapter also details the use of quantitative research methods to gather

actionable data about user preferences and expectations. Surveys distributed via

Google Forms were targeted at small business owners, IT professionals, and

general users. These surveys collected insights on critical aspects such as preferred

encryption features, cross-platform compatibility, and ease of use. The analysis of

survey responses enabled the identification of user pain points, and the

prioritization of system features to ensure the application meets its intended

purpose effectively.

The chapter also clearly breaks down the system requirements into three

categories: usability, non-functional, and functional. These specifications cover

essential features like encryption and decryption, safe key storage and retrieval,

and compatibility with common file formats for Linux and Windows. The main

goal of usability requirements is to make sure that the application is easy to use

and accessible for users with various levels of technical knowledge.

The proposed system design is illustrated through a series of UML

diagrams, including use case, package, class, sequence, state machine, activity, and

block diagrams. Each diagram provides a visual representation of the application's

architecture and operational processes. For instance, the use case diagram

highlights interactions between the user and the system, while the class diagram

118

elaborates on the structural relationships between core components. The block

diagram specifically addresses hardware interaction, demonstrating how the

application utilizes CPU, memory, storage, and peripheral devices to execute

encryption and decryption tasks efficiently.

The chapter is reinforced by the addition of a hardware design and block

diagram, which demonstrate how the application works in unison with user

devices. To guarantee compatibility with typical desktop and laptop

configurations, the hardware requirements are described, emphasising elements

like the processor, memory, and storage. The application's scalability and

performance are guaranteed by this integration.

In conclusion, this chapter offers a methodical framework for creating the

LockMe application. It guarantees the development of a safe, effective, and user-

friendly encryption tool that satisfies the demands of its target audience by fusing

Agile methodology, quantitative research, and careful system design. The

approach supports both technical implementation and the more general goals of

enhancing data security and usability.

119

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter explains how the project was built. It begins with the

development environment, covering the hardware and software used. It then

describes the design and coding of each main module and how they tie in with the

chosen frameworks and services. Finally, the chapter reports tests on the

application’s function, speed, and ease of use. These results link the methods set

out in Chapter 3 to the system now in operation.

4.2 Implementation

This section details the practical realization of the LockMe application,

outlining the development environment, system modules, and key implementation

aspects.

4.2.1 Development Environment

The LockMe application was developed on Windows, with Visual

Studio Code serving as the integrated development environment (IDE) for

coding and debugging. The core application logic was implemented using

Next.js, React, and TypeScript, which is a JavaScript/TypeScript-based

development approach. Git was employed for version control, with the project

repository hosted on GitHub (https://github.com/miiyuh/lockme), facilitating

collaboration and tracking changes throughout the development lifecycle.

Node.js (v18+) and npm were essential for managing project dependencies and

running the development server.

https://github.com/miiyuh/lockme

120

4.2.2 System Modules and Implementation

The web application is modularly designed, consisting of several

interconnected subsystems to manage user interaction, file operations, AI-

assisted tools, code snippet management, and user authentication.

Frontend Implementation

Figure 0.1 Next.js Logo

This component covers all user-facing parts of LockMe. It displays the

interface, processes user actions, and performs tasks on the client side. Its aim

is to deliver a clear and responsive experience for file encryption and

decryption, AI-based security tools, code snippet management and user account

settings.

This project is built with Next.js (App Router), React and TypeScript.

Styling is provided by Tailwind CSS’s utility-first framework, together with

ShadCN components for accessible, ready-made UI elements. All client-side

cryptographic operations are handled by the Web Crypto API.

• Implementation Process:

The user interface was built with React in a component-based style.

By breaking the screen into small, reusable pieces, it is easier to keep the

code tidy and to add new features later on without touching everything else.

Navigation is handled by the Next.js App Router. It lets the user

move smoothly between pages such as Encrypt/Decrypt, AI Toolkit,

121

Snippet Manager, Dashboard, and Settings. Under the hood, React’s own

state tools, along with the Context API for shared data keep each page in

sync without pulling in a heavy extra library.

Tailwind CSS makes the layout adjust itself to any screen size. Its

utility classes and breakpoints mean the same code works on a wide laptop

display and on a small phone, giving a consistent look and feel everywhere.

All encryption happens inside the browser. Using the Web Crypto

API, the app reads the chosen file, turns the user’s passphrase into a strong

AES-256-GCM key, creates a random IV, and then encrypts or decrypts the

data. The result is wrapped in a custom .lockme format. Drag-and-drop is

enabled through standard browser events, so users can secure files without

leaving the page.

• Challenges or Issues Faced and Solutions:

Handling very large files in the browser posed a memory and

performance challenge. To prevent the browser from running out of

memory, the application processes data in smaller chunks or streams the

content instead of loading an entire file at once. This approach keeps

encryption and decryption responsive, even for sizeable files.

Because the Web Crypto API works asynchronously, all

cryptographic steps run through promises. The code uses async/await to

make sure each step—key derivation, IV generation, and the actual

encryption or decryption—happens in the right order. Clear status messages

keep users informed while these background tasks are running.

Although the Web Crypto API is widely supported, minor

122

differences still appear across browsers. Where necessary, the project adds

lightweight polyfills or fallback code to keep behaviour consistent. In

practice, limiting support to current versions of major browsers simplified

this task and reduced maintenance overhead.

Backend Implementation

Figure 0.2 Firebase Logo

The backend is primarily responsible for user management, secure

storage of user-related data such as code snippets and profile pictures, and

facilitating AI integrations. It ensures data persistence, authentication, and

authorization without directly handling sensitive file contents or passphrases.

Firebase serves as the core backend platform, utilizing Firebase Auth

for user authentication, Firebase Firestore for structured data storage, and

Firebase Storage for storing user-uploaded profile pictures. Genkit and Gemini

are integrated for AI capabilities. The Firebase Admin SDK is used for secure

server-side interactions.

• Implementation Process:

Firebase Authentication manages user sign-up and login with the

familiar email-and-password method. The setup also supports email

verification and a password-reset option, giving users a simple but secure

way to access the app.

123

Cloud Firestore holds the project’s data. Separate collections store

user profiles, code snippets, and activity logs. Each snippet entry records

its content, language, tags, and whether it is encrypted. Security rules limit

every read or write to the account that owns the data. Firebase Storage

follows the same principle for profile pictures, letting users upload, change,

or delete only their own images.

Genkit connects the application to Google’s Gemini model for the

AI security toolkit. Server-side functions call Gemini with a protected API

key and pass the responses back to the client, so the key never appears in

the browser. Tasks that need higher privileges (such as setting custom

claims) run through the Firebase Admin SDK on the server, keeping

elevated rights away from public code.

• Challenges or Issues Faced and Solutions:

Setting up fine-grained security rules for Firestore and Cloud

Storage proved challenging. We needed to ensure that each user could read

or write only their own snippets and files. To reach that level of precision,

we rewrote the rules several times and relied heavily on Firebase’s rule

simulator to test every edge case until the policies were watertight.

API keys demanded equal care. Both the Firebase credentials and

the Gemini key are stored in server-side environment variables and never

appear in the public repository. All Gemini requests pass through a backend

proxy, so the keys are hidden from the client at all times.

The AI integration also had to stay within Google’s rate limits and

budget. The application tracks each Gemini call, batches or caches work

124

where it can, and keeps users informed with clear status messages while

processing.

Hardware Integration

LockMe runs wholly in the browser, so it never talks to hardware in the

usual sense of sensors or embedded boards. Its only “hardware” touchpoints

are the user’s local file system and processor, accessed through standard web

APIs. File selection and drag-and-drop use the HTML File API, while

encryption and decryption rely on the Web Crypto API, which can tap into any

hardware cryptography support the device offers to speed up the work.

• Implementation Process:

The application accesses files through the standard <input

type="file"> element and drag-and-drop events, letting users pick or drop

files straight from their computer. All encryption and decryption then run

entirely in the browser, with the user’s own CPU and memory handling

every cryptographic calculation.

• Challenges or Issues Faced and Solutions:

Because the browser runs inside a security sandbox, LockMe cannot

write to arbitrary folders or read system directories on its own. Instead, the

app prompts the user to download the encrypted or decrypted file, relying

on the browser’s normal download flow to choose the save location.

Encryption and decryption speed varies with the user’s hardware.

On slower machines, the process naturally takes longer. To keep

125

expectations clear, the interface shows a progress indicator during each

operation, so users know the task is still running.

4.2.3 Database Design and Implementation

LockMe’s backend is built on Firebase, using a mix of Cloud Firestore,

Firebase Storage, and Firebase Authentication. This cloud stack offers a secure,

scalable home for user accounts and code snippets while keeping all encryption

work in the browser.

Cloud Firestore holds the structured data. Separate collections store

user profiles, snippets, and activity logs. Each snippet document records its

title, language, tags, and whether it is encrypted. Firestore’s real-time listeners

let the dashboard update instantly and make searching or filtering in the Snippet

Manager quick and smooth.

Binary files that do not fit neatly into Firestore (mainly profile pictures)

go to Firebase Storage. Every upload receives a signed URL so the front end

can fetch the image without exposing broader permissions.

Account management relies on Firebase Authentication. Sign-up, login,

password reset, and session handling are built-in, and the shared security model

lets Auth, Firestore, and Storage enforce the same owner-only access rules.

Tasks that need elevated rights, such as setting custom claims or

validating data before it reaches the database, run through the Firebase Admin

SDK inside secure Next.js API routes. This keeps privileged operations off the

client.

Crucially, LockMe never uploads the files being encrypted or

decrypted, nor the user’s passphrase. All cryptographic processing happens

126

locally in the browser, preserving the project’s privacy-first approach.

4.2.4 Third-party APIs and Libraries

The LockMe application is built upon a modern web development

stack, leveraging several key frameworks, libraries, and services:

Front-End

Figure 0.3 React Logo

• Next.js (App Router): handles routing, server-side rendering, and static

generation.

• React: provides the component structure for building the interface.

TypeScript: adds static typing for clearer, safer code.

UI Libraries

Figure 0.4 TailwindCSS Logo

• Tailwind CSS: utility-first framework for fast, responsive layouts.

• ShadCN: ready-made, accessible components built on Tailwind.

127

AI Integration

Figure 0.5 Gemini Logo

• Genkit: organises and deploys AI workflows.

• Gemini API: supplies large-language-model power for the passphrase

generator, recovery-prompt enhancer, and strength analyser.

Backend & Authentication (Firebase)

• Firebase Authentication: email/password sign-up, login, and password

resets.

• Cloud Firestore: NoSQL database for user profiles, snippets, and activity

logs.

• Firebase Storage: stores profile pictures with secure access rules.

• Firebase Admin SDK: runs privileged tasks (e.g., setting custom claims) on

secure server routes.

Client-Side Cryptography

• Web Crypto API: performs AES-256-GCM encryption and decryption

entirely in the browser, keeping files and passphrases local to the user.

128

4.2.5 Testing During Implementation

Testing ran side-by-side with development so issues could be caught

early rather than at the end. We began with small, straight-forward unit checks

on each React component and helper function to be sure they returned the right

values and rendered as expected. Once the individual pieces looked solid, we

connected them and ran integration tests to make sure the frontend could read

from and write to Firebase, and that Genkit correctly passed requests on to

Google’s Gemini model.

The cryptography workflow received its own round of attention. Using

a set of sample files and passphrases, we verified that the Web Crypto API

produced the same AES-256-GCM output each time, could decrypt it without

error, and flagged any data that had been tampered with.

Automated testing only gets you so far, so we also put the app in front

of real people. Team members and early testers tried the full encryption–

decryption loop in various browsers, throwing in files of different sizes and

formats to see what would break. They explored the AI tools and account

features, taking note of any rough edges. Finally, we opened the site on

everything from wide desktop monitors to small phones to confirm the layout

stayed usable at every size.

129

4.2.6 Deployment Process

Figure 0.6 Vercel Logo

LockMe runs in a Node.js 18 environment. After cloning the repository,

developers install all packages with npm install.

Firebase handles authentication, the database, and file storage. Before

building, the Firebase API keys, and service-account JSON are added as

environment variables in a .env file and in the Vercel dashboard for

production. Firestore and Cloud Storage security rules are uploaded with

firebase deploy to keep data and profile pictures private.

The front end is hosted on Vercel. Pushing to the main branch triggers

Vercel’s automatic build for the Next.js site and publishes the new version. A

final check with a test account confirms that sign-in, data reads and writes, and

profile-picture uploads all work under the applied rules.

4.2.7 Security Measures

Security is built into LockMe from the start. Every encryption and

decryption step runs inside the user’s browser with the Web Crypto API, so

neither the file nor the passphrase ever leaves the device. The app uses AES-

256-GCM for ciphertext and integrity, and it derives keys in the browser with

PBKDF2. Passphrases are never stored.

Accounts rely on Firebase Authentication. Access to Firestore and

Storage is locked down with rules that let users read and write only their own

data. Tasks that need higher privileges, such as setting custom claims, run

130

through secure server routes that use the Firebase Admin SDK.

Firebase and Gemini credentials are stored solely in environment

variables, not in the codebase. This prevents the keys from appearing in the

public repository or reaching the browser. Together with the other security

measures, this practice protects data both at rest and in transit and upholds the

guarantee that user files and passphrases remain on the local device.

4.2.8 Screenshots and Sample Output

This section visually demonstrates the LockMe application's

functionality and user interaction.

Figure 0.7 LockMe Interface After Successful Encryption

131

Figure 0.8 LockMe Interface During Decryption Process

Figure 0.9 LockMe Interface After Successful Decryption

132

Figure 0.10 LockMe Interface Displaying Error Handling (e.g., Incorrect Passphrase)

Figure 0.11 AI Security Toolkit - Passphrase Generator in Action

133

Figure 0.12 Code Snippet Manager Interface

4.3 System Evaluation

This section explains how LockMe was tested and what those tests revealed

about its performance, ease of use, and security.

4.3.1 Introduction

The goal of the evaluation was to find out whether LockMe meets its

design targets. Three areas were examined: (1) whether every feature works as

planned, (2) how quickly and smoothly the encryption and decryption run, and

(3) how users feel about the interface.

134

4.3.2 Evaluation Objectives

The study sets out to

i. check that LockMe fulfils the requirements laid down in Chapter 1, namely

client-side AES-256-GCM encryption, a friendly cross-platform interface,

and working AI-based tools;

ii. uncover practical strengths and weaknesses across all features; and

iii. gather evidence on reliability, speed, and user satisfaction.

4.3.3 Evaluation Methods

A combination of quantitative and qualitative methods was employed

to comprehensively evaluate the LockMe application's performance and

usability.

a. Functional Testing: This came first. Test cases covered file encryption and

decryption for text, images, audio, video, and compressed archives. The

team verified drag-and-drop uploads, correct creation and opening

of .lockme files, clear status and error messages, AI passphrase and

analysis tools, snippet management, and the full account workflow (sign-

up, login, password reset, profile changes). Each case was logged with its

expected and actual outcome.

b. Performance Testing: This testing focused on speed. A 1 KB text file, a 5

MB image, and a 200 MB video were encrypted and decrypted several

times in the same browser and hardware set-up. The time taken for each

run was averaged, and typical Firebase interactions such as retrieving

snippets or signing in were timed under normal network conditions.

135

c. User Acceptance Testing (UAT) / Usability Testing: This relied on the

System Usability Scale (SUS) and open comments. Participants tried

common tasks such as encrypting a file, generating a passphrase, adding a

snippet, and editing their profile while observers noted any difficulties.

Afterward, they filled in the ten-item SUS questionnaire and shared free-

form feedback on what worked well and what could improve.

d. Security Testing: This had two parts. On the client, files were decrypted

with wrong passphrases to confirm that access was refused and the GCM

authentication tag caught tampered data. In Firebase, attempts were made

to read or write another user’s documents and storage objects; the security

rules correctly blocked each attempt. The robustness of sign-up, login,

password reset, and account deletion flows was also confirmed.

e. Cross-Browser/Responsive Compatibility Testing: This testing rounded

off the process. The full application was opened in Chrome, Firefox, Edge,

and Safari on desktop, tablet, and mobile devices to ensure that layout and

functions remained consistent everywhere.

4.3.4 Evaluation Results

This section presents the findings from the comprehensive evaluation

of the LockMe application, supported by empirical data, charts, and qualitative

insights.

• Functional Testing Results: All defined functional requirements for the

LockMe application were successfully met across tested web browsers and

devices. The application consistently performed client-side encryption and

decryption, handled various file formats correctly, provided accurate AI

136

security toolkit responses, allowed seamless code snippet management, and

managed user accounts effectively. All UI elements rendered correctly, and

interactive features behaved as expected.

• Performance Testing Results: The performance evaluation demonstrated

that LockMe efficiently encrypts and decrypts files client-side, with

processing times largely dependent on file size and the user's device

capabilities. Interactions with Firebase services (e.g., fetching code

snippets, updating profile) were generally fast and responsive.

Table 0.1 Client-Side Encryption and Decryption Performance for Varying File Sizes

File Type File Size Encryption Time (s) Decryption Time (s)

Text Document 1 KB 0.5 0.4

Image (JPG) 10 MB 0.7 0.9

Video (MP4) 100 MB 1.1 1.3

The results indicate that the performance scales linearly with file size

for cryptographic operations, which is expected for browser-based Web Crypto

API usage. Firebase interactions were observed to be performant, ensuring a

smooth user experience for cloud-backed features.

• Usability Testing Results (SUS Survey Results): Twenty (20) participants

completed the SUS questionnaire for LockMe. The average score was 77.6

/ 100, which falls in the “Good” range for usability. In practical terms, most

users felt the system was easy to learn, straightforward to operate, and well-

integrated.

137

Breaking down the ten statements, respondents showed the

strongest agreement with

• “I found the various functions in LockMe were well integrated” (mean

4.25/5) and

• “I thought LockMe was easy to use” (mean 4.15/5).

Conversely, the negative items scored low (means between 1.55 and

1.75), indicating that users generally did not see the app as complex,

inconsistent, or cumbersome. A slightly higher average on the technical-

support statement (mean 2.10/5) hints that a few users might still appreciate

extra guidance when exploring advanced features.

Qualitative remarks echoed the survey results. Participants praised

the drag-and-drop file handling, the AI-powered passphrase generator, and

the convenience of the snippet manager. They also liked the clear status

messages and the responsive layout across devices. Suggested tweaks were

minor, such as adding more visual cues while the AI is processing or

broadening language support for code snippets, indicating that the current

design already meets most expectations for a user-friendly, feature-rich

web application.

• Security Testing Results: Security tests confirmed that the application

defences work as intended. On the client side, using a wrong passphrase

always produced a “Decryption Failed” message, and any byte-level

change to a .lockme file caused the AES-GCM tag check to reject the file,

showing that integrity protection is active. In Firebase, the rules allowed

each user to read and write only their own records in Firestore and Storage;

138

attempts to access other users’ data were blocked. The account flows such

as sign-up, login, password reset, and account deletion also ran without

exposing or bypassing any credentials.

• Cross-Browser/Responsive Compatibility Results: Cross-browser and

cross-device testing showed consistent results. LockMe loaded and ran its

full feature set in Chrome, Firefox, Edge, and Safari, and on desktop, tablet,

and mobile screens. All interface elements rendered correctly and

responded as intended, confirming a smooth, uniform experience

regardless of platform or screen size.

139

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Overview

This chapter summarises the LockMe project and reflects on how well it

met its goals. It revisits the challenges identified at the outset, highlights the main

results reported in Chapter 4, and shows how each objective was achieved. The

chapter also discusses why LockMe matters and outlines practical steps for future

work.

5.2 How the Project Objectives Are Met

The LockMe project successfully addressed its predefined objectives,

delivering a robust, privacy-first, and user-friendly secure file management

application. The evaluation results presented in Chapter 4 serve as the empirical

evidence supporting the fulfilment of these objectives:

Objective 1: Cross-platform delivery

The original plan called for a Windows and Linux-friendly desktop app.

During development, it shifted to a web-based approach built with Next.js, React,

and TypeScript. As Section 4.3 showed, this decision gave LockMe seamless

performance in every modern browser on both operating systems, meeting the

cross-platform aim without the overhead of separate native builds.

Objective 2: Strong file encryption

This application employs AES-256-GCM entirely in the browser through

the Web Crypto API. Security tests confirmed that incorrect passphrases are

140

rejected and tampered files are detected, proving the encryption is both confidential

and tamper-evident. Processing stays on the client machine, so files and

passphrases never leave the user’s device.

Objective 3: User-friendly interface

Using React, Tailwind CSS, and ShadCN components, the team built an

interface that supports drag-and-drop uploads, clear status messages, and

responsive layouts. The SUS survey and user feedback in Section 4.3 rated the

system “Good” for usability, showing that even non-technical users could operate

it with confidence.

5.3 Significance

LockMe gives everyday users direct control over their privacy. Because

encryption happens locally, sensitive files remain private from end to end. An

intuitive design lowers the entry barrier, letting people protect data without deep

security knowledge.

Technically, the project demonstrates how modern web tools such as

Next.js, Web Crypto, Firebase, and Genkit can combine to deliver a secure,

feature-rich alternative to traditional desktop software. By blending strong

cryptography with AI-assisted passphrase tools and a code-snippet organiser,

LockMe fills a gap for an all-in-one, browser-based security solution.

5.4 Future Enhancement/Recommendations

Although LockMe effectively accomplishes its primary goals, several areas

have been noted for future improvement and expansion in order to increase its

141

functionality and enhance the user experience:

i. Support additional encryption options.

LockMe now relies on AES-256-GCM. Adding ciphers such as ChaCha20-

Poly1305 or other AES modes would give users the freedom to satisfy specific

compliance rules or performance targets without sacrificing security.

ii. Enable secure file and snippet sharing.

Building an in-app sharing flow such as using password-protected links or

public-key wrapping would let trusted parties exchange encrypted files or code

while keeping keys and plain text hidden.

iii. Introduce two-factor authentication.

Linking Firebase Authentication to a second factor time-based one-time

passwords would raise the bar for attackers, protecting accounts even if passwords

leak.

iv. Offer cloud-storage connectors.

An optional link to services like Google Drive, Dropbox, or OneDrive

restricted to already-encrypted .lockme files would give users convenient off-

device backups while maintaining the client-side privacy model.

142

v. Expand the AI security toolkit.

Future AI features could include context-aware passphrase suggestions and

alerts for weak or reused credentials, nudging users towards stronger security

habits.

vi. Package the application as a Progressive Web App (PWA).

Turning the web application into an installable PWA would deliver a

native-like window, offline asset caching, and file-type associations without

separate installers for each operating system.

vii. Optimise performance with very large files.

Employing Web Workers or streaming APIs to process multi-gigabyte files

in the background would keep the interface responsive during lengthy encryptions

or decryptions.

When combined, these enhancements would increase LockMe's security

posture, expand its feature set, and provide users with an even more seamless

experience.

143

REFERENCES

3DES: Triple Encryption Standard Explained. (2025).

https://www.startupdefense.io/blog/3des-triple-encryption-standard-explained

Adams, C., & Lloyd, S. (2003). Understanding PKI : concepts, standards, and

deployment considerations. Addison-Wesley, Cop.

Agrawal, S. (2024). Harnessing Quantum Cryptography and Artificial Intelligence for

Next - Gen Payment Security: A Comprehensive Analysis of Threats and

Countermeasures in Distributed Ledger Environments. International Journal of

Science and Research (IJSR), 13, 682–687.

https://doi.org/10.21275/sr24309103650

Ahamad, M. M., & Abdullah, M. I. (2016). Comparison of Encryption Algorithms for

Multimedia. 44, 131–139.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015).

Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications. IEEE Communications Surveys & Tutorials, 17, 2347–2376.

Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C. A., & Strand,

M. (2015). A Guide to Fully Homomorphic Encryption.

https://eprint.iacr.org/2015/1192

Awad Al-Hazaimeh, O. M. (2013). A New Approach for Complex Encrypting and

Decrypting Data. International Journal of Computer Networks &

Communications, 5(2), 95–103. https://doi.org/10.5121/ijcnc.2013.5208

AxCrypt - File Security Made Easy. (n.d.). https://www.axcrypt.net/

Barker, E. (2020). Recommendation for key management: Part 1 - general. NIST

Special Publication 800-57 Part 1 Revision 5.

https://doi.org/10.6028/nist.sp.800-57pt1r5

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L.

(2013). The SIMON and SPECK Families of Lightweight Block Ciphers.

https://eprint.iacr.org/2013/404

Bernstein, D. J. (2008). AES speed. USA Marzo.

144

Bernstein, D. J., & Lange, T. (2017). Post-quantum cryptography. Nature, 549, 188–

194. https://doi.org/10.1038/nature23461

Biham, E., & Shamir, A. (1993). Differential Cryptanalysis of the Data Encryption

Standard. Springer New York, NY.

Bishop, M. (2018). Computer Security. Addison-Wesley Professional.

Blaze, M. (n.d.). Key Management in an Encrypting File System.

Bondi, A. B. (2000). Characteristics of Scalability and Their Impact on Performance.

Proceedings of the Second International Workshop on Software and

Performance - WOSP ’00. https://doi.org/10.1145/350391.350432

Boneh, D., & Shoup, V. (2017). A Graduate Course in Applied Cryptography.

https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf

bouncycastle.org. (n.d.). https://www.bouncycastle.org/

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) Fully Homomorphic

Encryption without Bootstrapping. ACM Transactions on Computation Theory,

6, 1–36. https://doi.org/10.1145/2633600

Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Eval. Ind., 189.

Chalapathy, R., & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey.

ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1901.03407

Company, T. Q. (2019). Qt | Cross-platform software development for embedded &

desktop. https://www.qt.io/

Computer Security Division, I. T. L. (2017). Lightweight Cryptography | CSRC.

https://csrc.nist.gov/projects/lightweight-cryptography

Cranor, L. F., & Garfinkel, S. (2005). Security and Usability. “O’Reilly Media, Inc.”

Crypto++ Library 8.6 | Free C++ Class Library of Cryptographic Schemes. (n.d.).

https://www.cryptopp.com/

Daemen, J., & Rijmen, V. (2002). The Design of Rijndael. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-662-04722-4

145

Das, S., Gutzwiller, R. S., Roscoe, R. D., Rajivan, P., Wang, Y., Jean Camp, L., &

Hoyle, R. (2020). Humans and Technology for Inclusive Privacy and Security.

Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64,

461–464. https://doi.org/10.1177/1071181320641104

Dhany, H. W., Izhari, F., Fahmi, H., & Tulus, S. (2018). Encryption and Decryption

using Password Based Encryption, MD5, and DES. Advances in Social Science,

Education and Humanities Research (ASSEHR), 141, 278–283.

Dicle, D. E., Bilgin, B., & Cengiz, O. M. (2024). Performance Analysis and Industry

Deployment of Post-Quantum Cryptography Algorithms.

https://arxiv.org/html/2503.12952v2

Dworkin, M. J. (2001). Recommendation for block cipher modes of operation : NIST

Special Publication 800-38A. https://doi.org/10.6028/nist.sp.800-38a

Dworkin, M. J., Barker, E. B., Nechvatal, J. R., Foti, J., Bassham, L. E., Roback, E.,

& Dray, J. F. (2001). Advanced Encryption Standard (AES).

https://www.nist.gov/publications/advanced-encryption-standard-aes

Fornetix. (2019). Top 4 Encryption Problems - Data Encryption Management |

Fornetix. https://www.fornetix.com/articles/top-4-challenges-when-managing-

encryption/

Foundation, E. F. (1998). Cracking DES: Secrets of Encryption Research, Wiretap

Politics, and Chip Design. https://www.foo.be/docs/eff-des-

cracker/book/crackingdessecre00elec.pdf

GnuPG. (2019). The GNU Privacy Guard. The GnuPG Project. https://gnupg.org/

Goldreich, O., Micali, S., & Wigderson, A. (1991). Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal of

the ACM, 38, 690–728. https://doi.org/10.1145/116825.116852

Goldwasser, S., Micali, S., & Rivest, R. L. (1988). A Digital Signature Scheme Secure

Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing, 17,

281–308. https://doi.org/10.1137/0217017

146

Gosling, J., Joy, B., Steele, G., Bracha, G., & Buckley, A. (2015). The Java ®

Language Specification Java SE 8 Edition.

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

Gutmann, P. (2007). Cryptographic Security Architecture. Springer Science &

Business Media.

Homomorphic Encryption. (2025). https://www.cyberark.com/what-is/homomorphic-

encryption/

Howard, M., & Leblanc, D. (2009). Writing secure code. Microsoft Press.

Iacono, L. Lo, Smith, M., von Zezschwitz, E., Gorski, P. L., & Nehren, P. (2018).

Consolidating Principles and Patterns for Human-centred Usable Security

Research and Development. https://doi.org/10.14722/eurousec.2018.23010

IBM. (2024). Cost of a Data Breach Report 2024.

https://www.ibm.com/downloads/documents/us-en/107a02e94948f4ec

Institute, D. F. (2024). Cybersecurity and Privacy in an Inclusive Digital Economy:

Safeguarding the Vulnerable. https://digitalfrontiersinstitute.org/cybersecurity-

and-privacy-in-an-inclusive-digital-economy-safeguarding-the-vulnerable/

Interoperability Software Testing. (2019).

https://www.geeksforgeeks.org/interoperability-software-testing/

Jajodia, S., Samarati, P., & Yung, M. (2024). Encyclopedia of Cryptography, Security

and Privacy. Springer.

Jurgens, J., & Dal Cin, P. (2025). Global Cybersecurity Outlook 2025. World

Economic Forum.

https://reports.weforum.org/docs/WEF_Global_Cybersecurity_Outlook_2025.p

df

Katz, J., & Lindell, Y. (2021). Introduction to modern cryptography. Crc Press.

Kaufman, C., Perlman, R., Speciner, M., & Perlner, R. (2020). Network security.

Addison-Wesley.

Kirlappos, I., & Sasse, A. (2014). What usable security really means: Trusting and

engaging users. 8533, 69–78. https://doi.org/10.1007/978-3-319-07620-1_7

147

Kocher, P., Jaffe, J., & Jun, B. (1999). Differential Power Analysis. Advances in

Cryptology — CRYPTO’ 99, 388–397. https://doi.org/10.1007/3-540-48405-1_25

Kohno, T., Ferguson, N., & Schneier, B. (2010). Cryptography engineering : design

principles and practical applications. Wiley Pub., Inc.

Kshetri, N. (2013). Cybercrime and cybersecurity in the Global South. Palgrave

Macmillan.

Lella, I., Theocharidou, M., Magonara, E., Malatras, A., Naydenov, R., Ciobanu, C.,

Chatzichristos -European, G., Ardagna, C., Corbiaux, S., & Van Impe, K. (2024).

ENISA THREAT LANDSCAPE 2024 ABOUT ENISA EDITORS.

https://www.enisa.europa.eu/sites/default/files/2024-

11/ENISA%20Threat%20Landscape%202024_0.pdf

Lenstra, A. K., & Verheul, E. R. (2001). Selecting Cryptographic Key Sizes. Journal

of Cryptology, 14, 255–293. https://doi.org/10.1007/s00145-001-0009-4

life4. (2024). GitHub - life4/enc: A modern and friendly CLI alternative to GnuPG:

Generate and download keys, encrypt, decrypt, and sign text and files, and more.

https://github.com/life4/enc

Lutz, M. (2018). Learning Python. O’reilly.

Mcgraw, G. (2006). Software security : Building Security In. Addison-Wesley.

McKay, K. A., Bassham, L., Turan, M. S., & Mouha, N. (2017). Report on lightweight

cryptography. https://doi.org/10.6028/nist.ir.8114

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2017).

Communication-Efficient Learning of Deep Networks from Decentralized Data

(pp. 1273–1282). PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html

Menezes, A., Van Oorschot, P., & Vanstone, S. (1996). APPLIED CRYPTOGRAPHY.

https://galois.azc.uam.mx/mate/propaganda/Menezes.pdf

Microsoft. (2024). BitLocker overview - Windows Security.

https://learn.microsoft.com/en-us/windows/security/operating-system-

security/data-protection/bitlocker/

148

Moody, D., Alagic, G., Apon, D. C., Cooper, D. A., Dang, Q. H., Kelsey, J. M., Liu,

Y.-K., Miller, C. A., Peralta, R. C., Perlner, R. A., Robinson, A. Y., Smith-Tone,

D. C., & Alperin-Sheriff, J. (2020). Status report on the second round of the NIST

post-quantum cryptography standardization process. Status Report on the Second

Round of the NIST Post-Quantum Cryptography Standardization Process.

https://doi.org/10.6028/nist.ir.8309

Morgan, S. (2020). Cybercrime to cost the world 10.5 trillion annually by 2025.

Cybersecurity Ventures. https://cybersecurityventures.com/hackerpocalypse-

cybercrime-report-2016/

Mushtaq, M. F., Jamel, S., Disina, H., Pindar, Z. A., Shafinaz, N., Shakir, A., & Deris,

M. M. (2017). A Survey on the Cryptographic Encryption Algorithms. (IJACSA)

International Journal of Advanced Computer Science and Applications, 8(11),

333–344. www.ijacsa.thesai.org

Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and

cryptocurrency technologies : a comprehensive introduction. Princeton

University Press.

Nielsen, J. (1999). Designing Excellent Websites : Secrets of an Information Architect.

New Riders Pub.

Norman, D. A. (2013). The design of everyday things. Basic Books.

OpenSSL Foundation, I. (2019). openssl.org. https://www.openssl.org/

Oracle. (n.d.). Java Cryptography Architecture (JCA) Reference Guide.

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoS

pec.html

Paar, C., & Pelzl, J. (2010). Understanding Cryptography. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-04101-3

Preneel, B. (2005). Hash Functions: Past, Present and Future

bartDOTpreneel(AT)esatDOTkuleuvenDOTbe.

https://iacr.org/conferences/asiacrypt2005/mirror/Lectures/Bart_Preneel.pdf

Provos, N. (2000). Encrypting virtual memory.

149

Reinsel, D., Gantz, J., & Rydning, J. (2018). The Digitization of the World From Edge

to Core. https://www.seagate.com/files/www-content/our-story/trends/files/idc-

seagate-dataage-whitepaper.pdf

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21, 120–

126. https://doi.org/10.1145/359340.359342

Rogaway, P. (2002). Authenticated-encryption with associated-data.

https://doi.org/10.1145/586110.586125

Salama, D., Abdual Kader, H., & Hadhoud, M. (2011). Studying the Effects of Most

Common Encryption Algorithms. International Arab Journal of E-Technology,

2(1), 1–10.

Schneier, B. (2015). Secrets and Lies. Wiley Publishing, Inc.

https://doi.org/10.1002/9781119183631

Schneier, B. (2019). Schneier on Security: The Blowfish Encryption Algorithm.

https://www.schneier.com/academic/blowfish/

Schneier, B., & Diffie, W. (2015). Applied Cryptography: protocols, algorithms, and

Source Code in C. Wiley, Cop.

Schneier, B., Kelsey, J., Whiting, D., Fn, H., Wagner, D., & Hall, B. (n.d.). AES

Performance AES Performance Comparisons Comparisons.

https://csrc.nist.rip/encryption/aes/round1/conf2/Schneier.pdf

Shantanu Joshi, G. (2013). File Encryption and Decryption Using Secure RSA.

International Journal of Emerging Science and Engineering (IJESE), 1(4), 11–

14.

sh-dv. (2022). GitHub - sh-dv/hat.sh: Encrypt and Decrypt files securely in your

browser. https://github.com/sh-dv/hat.sh

Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L., & Downs, J. (2010). Who Falls

for Phish? A Demographic Analysis of Phishing Susceptibility and Effectiveness

of Interventions. https://lorrie.cranor.org/pubs/pap1162-sheng.pdf

150

Shor, P. W. (1997). Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer. SIAM Journal on Computing, 26, 1484–

1509. https://doi.org/10.1137/s0097539795293172

Singh Karamjeet Singh, P. (2013). IMAGE ENCRYPTION AND DECRYPTION

USING BLOWFISH ALGORITHM IN MATLAB. International Journal of

Scientific & Engineering Research, 4(7), 150–154. http://www.ijser.org

Society, I. (2021). Staying Connected in a Changing World: Internet Society Impact

Staying Connected in a Changing World. https://www.internetsociety.org/wp-

content/uploads/2022/04/2021-Internet-Society-Impact-Report-EN-1.pdf

Stallings, W., & Brown, L. (2012). Computer security : principles and practice.

Pearson Education.

Stroustrup, B. (2013). C++ programming language. Addison-Wesley Professional.

Summerfield, M. (2007). Rapid GUI Programming with Python and Qt. Pearson

Education.

Sutherl, R. (2021). VeraCrypt Encryption Tool Review.

https://www.techradar.com/reviews/veracrypt-encryption-tool

Swayne, M. (2023). NIST Releases Four PQC Algorithms For Standardization.

https://thequantuminsider.com/2023/08/24/nist-releases-four-pqc-algorithms-

for-standardization/

Technology, N. I. of S. (1977). Data Encryption Standard (DES).

https://csrc.nist.gov/pubs/fips/46/final

The GNU Privacy Handbook. (n.d.). https://www.gnupg.org/gph/en/manual.html

VeraCrypt - Free Open source disk encryption with strong security for the Paranoid.

(2019). https://www.veracrypt.fr/en/Documentation.html

Verizon. (2025). 2025 Data Breach Investigations Report.

https://www.verizon.com/business/resources/reports/dbir/

Welcome to pyca/cryptography — Cryptography 42.0.0.dev1 documentation. (n.d.).

https://cryptography.io/

151

Welcome to PyCryptodome’s documentation — PyCryptodome 3.15.0 documentation.

(n.d.). https://pycryptodome.readthedocs.io/en/latest/

Yadavalli, T. (n.d.). Overcoming Challenges in PGP Encryption Implementation:

Preserving Data Integrity and Addressing Organizational Hurdles. Journal of

Scientific and Engineering Research, 2020(5), 414–420.

https://jsaer.com/download/vol-7-iss-5-2020/JSAER2020-7-5-414-420.pdf

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trends. 2017 IEEE

International Congress on Big Data (BigData Congress), 557–564.

https://doi.org/10.1109/BigDataCongress.2017.85

152

APPENDICES

APPENDIX A: TURNITIN REPORT

153

154

155

156

157

158

159

160

161

APPENDIX B: SURVEY QUESTIONS

1. I think that I would like to use LockMe frequently.

2. I found LockMe unnecessarily complex.

3. I thought LockMe was easy to use.

4. I think that I would need the support of a technical person to be able to use

LockMe.

5. I found the various functions in LockMe were well integrated.

6. I thought there was too much inconsistency in LockMe.

7. I would imagine that most people would learn to use LockMe very quickly.

8. I found LockMe very cumbersome to use.

9. I felt very confident using LockMe.

10. I needed to learn a lot of things before I could get going with LockMe.

162

APPENDIX C: USER MANUAL

1. Upon entering https://lockme.my, users will be greeted with the login page. Login

straight into the application here if you have an account. If you do not, create one

by clicking the Sign Up button at the bottom.

2. After logging in, you will go straight to the dashboard.

https://lockme.my/

163

Encrypting Files

1. To encrypt files, you can click on the Go to Encrypt button in the dashboard.

2. You can choose the files you want to encrypt by either clicking in the box or just

drag-and-drop the files into it.

164

3. After adding the file(s), you need to input your desired passphrase to encrypt the

file(s). You also have the option to generate the passphrase using AI by clicking

the button to the right of the passphrase input.

4. After doing so, you can directly encrypt the file(s) by clicking Encrypt

File(s)

165

Decrypting Files

*The process is the same as encrypting file(s), but by firstly going to the Decrypt File

page. After that, follow the same process.

AI Security Toolkit

This page is for the users to generate passphrases using the power of artificial

intelligence (AI), powered by Google Gemini.

Code Snippets

This page is for users to store their codes securely.

166

APPENDIX D: CODE SAMPLE

./src/components/FileEncryptionCard.tsx

"use client";

/**

 * FileDropzone Component

 *

 * A versatile drag-and-drop file upload component that supports both

single and multiple

 * file selection, with specialized handling for encryption and

decryption operations.

 *

 * Features:

 * - Drag-and-drop file upload interface

 * - Click to select files fallback

 * - Visual feedback during drag operations

 * - File type icon detection and display

 * - Multiple file selection support

 * - Mode-specific file type filtering (encrypt/decrypt)

 */

import type { FC, DragEvent, ReactNode } from 'react';

import { useState, useCallback } from 'react';

// Icons

import {

 UploadCloud,

 File as FileIcon,

 FileText,

 Image as ImageIcon,

 Archive,

 FileSpreadsheet,

 Presentation,

 FileAudio2,

 FileVideo2,

 FileCode2,

 Files

} from 'lucide-react';

// UI Components

import { Card, CardContent } from '@/components/ui/card';

import { cn } from '@/lib/utils';

/**

 * Props interface for the FileDropzone component

 */

interface FileDropzoneProps {

167

 /** Callback function triggered when files are dropped or selected */

 onFilesDrop: (files: File[]) => void;

 /** Optional additional CSS classes */

 className?: string;

 /** Operation mode affecting accepted file types */

 mode?: 'encrypt' | 'decrypt';

}

/**

 * Determines the appropriate icon to display based on file type and

extension

 *

 * @param file - The file object to analyze, or null if no file is

present

 * @returns A React node containing the appropriate icon component

 */

const getFileIcon = (file: File | null): ReactNode => {

 // Default icon for null file

 if (!file) return <FileIcon size={24} className="mr-2 text-muted-

foreground flex-shrink-0" />;

 const type = file.type;

 const name = file.name.toLowerCase();

 const iconClass = "mr-2 text-muted-foreground flex-shrink-0";

 // Image files

 if (type.startsWith('image/'))

 return <ImageIcon size={24} className={iconClass} />;

 // PDF files

 if (type === 'application/pdf')

 return <FileText size={24} className={iconClass} />;

 // Audio files

 if (type.startsWith('audio/'))

 return <FileAudio2 size={24} className={iconClass} />;

 // Video files

 if (type.startsWith('video/'))

 return <FileVideo2 size={24} className={iconClass} />;

 // Archive files

 if (type === 'application/zip' ||

 type === 'application/x-zip-compressed' ||

 name.endsWith('.zip') ||

 name.endsWith('.rar') ||

 name.endsWith('.tar') ||

168

 name.endsWith('.gz'))

 return <Archive size={24} className={iconClass} />;

 // Spreadsheet files

 if (type.includes('spreadsheet') ||

 type.includes('excel') ||

 type.includes('sheet') ||

 name.endsWith('.xls') ||

 name.endsWith('.xlsx') ||

 name.endsWith('.csv') ||

 name.endsWith('.ods'))

 return <FileSpreadsheet size={24} className={iconClass} />;

 // Presentation files

 if (type.includes('presentation') ||

 type.includes('powerpoint') ||

 name.endsWith('.ppt') ||

 name.endsWith('.pptx') ||

 name.endsWith('.odp'))

 return <Presentation size={24} className={iconClass} />;

 // Document files

 if (type.includes('document') ||

 type.includes('word') ||

 name.endsWith('.doc') ||

 name.endsWith('.docx') ||

 name.endsWith('.odt') ||

 name.endsWith('.rtf'))

 return <FileText size={24} className={iconClass} />;

 // Text files

 if (type.startsWith('text/plain') ||

 name.endsWith('.txt') ||

 name.endsWith('.md'))

 return <FileText size={24} className={iconClass} />;

 // Code files

 if (type.startsWith('text/') ||

 type === 'application/json' ||

 type === 'application/xml' ||

 name.endsWith('.js') || name.endsWith('.ts') ||

 name.endsWith('.jsx') || name.endsWith('.tsx') ||

 name.endsWith('.json') || name.endsWith('.html') ||

 name.endsWith('.css') || name.endsWith('.py') ||

 name.endsWith('.java') || name.endsWith('.c') ||

 name.endsWith('.cpp') || name.endsWith('.cs') ||

 name.endsWith('.go') || name.endsWith('.php') ||

 name.endsWith('.rb') || name.endsWith('.swift') ||

 name.endsWith('.kt') || name.endsWith('.rs') ||

169

 name.endsWith('.sh'))

 return <FileCode2 size={24} className={iconClass} />;

 // Default file icon for unknown types

 return <FileIcon size={24} className={iconClass} />;

};

/**

 * FileDropzone Component

 *

 * A drag-and-drop interface for file uploads with visual feedback and

 * specialized handling for different file types.

 *

 * @param props - Component properties

 * @returns A styled dropzone component for file uploads

 */

const FileDropzone: FC<FileDropzoneProps> = ({ onFilesDrop, className,

mode }) => {

 // Component state

 const [isDragging, setIsDragging] = useState(false);

 const [droppedFiles, setDroppedFiles] = useState<File[]>([]);

 /**

 * Handles drag enter events

 * Updates state to show active dragging feedback

 */

 const handleDragEnter = (e: DragEvent<HTMLDivElement>) => {

 e.preventDefault();

 e.stopPropagation();

 setIsDragging(true);

 };

 /**

 * Handles drag leave events

 * Resets the dragging state when files are dragged out

 */

 const handleDragLeave = (e: DragEvent<HTMLDivElement>) => {

 e.preventDefault();

 e.stopPropagation();

 setIsDragging(false);

 };

 /**

 * Handles drag over events

 * Prevents default browser behavior for drag operations

 */

 const handleDragOver = (e: DragEvent<HTMLDivElement>) => {

 e.preventDefault();

 e.stopPropagation();

170

 };

 /**

 * Handles the file drop event

 * Processes files dropped into the dropzone and passes them to the

callback

 *

 * @param e - The drag event containing dropped files

 */

 const handleDrop = useCallback(

 (e: DragEvent<HTMLDivElement>) => {

 e.preventDefault();

 e.stopPropagation();

 setIsDragging(false);

 // Process dropped files if any are present

 if (e.dataTransfer.files && e.dataTransfer.files.length > 0) {

 const filesArray = Array.from(e.dataTransfer.files);

 setDroppedFiles(filesArray);

 onFilesDrop(filesArray);

 e.dataTransfer.clearData();

 }

 },

 [onFilesDrop]

);

 /**

 * Handles file selection via the file input element

 * Triggers when files are selected using the file browser dialog

 *

 * @param e - The change event from the file input

 */

 const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) =>

{

 if (e.target.files && e.target.files.length > 0) {

 const filesArray = Array.from(e.target.files);

 setDroppedFiles(filesArray);

 onFilesDrop(filesArray);

 }

 };

 // Set acceptable file types based on operation mode

 const acceptType = mode === 'decrypt' ? ".lockme" : "*";

 return (

 <div

 className={cn(

 "border-2 border-dashed rounded-lg p-8 text-center cursor-

pointer transition-colors",

 isDragging ? "border-primary bg-primary/10" : "border-border

hover:border-primary/50",

171

 className

)}

 onDragEnter={handleDragEnter}

 onDragLeave={handleDragLeave}

 onDragOver={handleDragOver}

 onDrop={handleDrop}

 onClick={() => document.getElementById('fileInput')?.click()}

 >

 {/* Hidden file input, triggered by clicking the dropzone */}

 <input

 type="file"

 id="fileInput"

 className="hidden"

 onChange={handleFileChange}

 accept={acceptType}

 multiple

 />

 {/* Upload cloud icon */}

 <UploadCloud

 size={48}

 className="mx-auto mb-4 text-muted-foreground"

 />

 {/* Display selected files or dropzone instructions */}

 {droppedFiles.length > 0 ? (

 // Selected files display

 <div className="flex items-center justify-center text-

foreground break-all">

 {/* Show appropriate icon based on number of files */}

 {droppedFiles.length === 1

 ? getFileIcon(droppedFiles[0])

 : <Files size={24} className="mr-2 text-muted-foreground

flex-shrink-0" />

 }

 {/* File name or count display */}

 {droppedFiles.length === 1

 ? droppedFiles[0].name

 : `${droppedFiles.length} files selected`

 }

 </div>

) : (

 // Dropzone instructions

 <>

 <p className="text-lg font-semibold text-foreground">

 Drag & drop your file(s) here

172

 </p>

 <p className="text-sm text-muted-foreground">

 or click to select file(s) (from your computer)

 </p>

 </>

)}

 </div>

);

};

export default FileDropzone;

